Maryann Hardy MSc, BSc(Hons), DCR

Stephen Boynes MSc, BSc(Hons), TDCR

School of Health Studies, University of Bradford, UK

Blackwell Science

Maryann Hardy MSc, BSc(Hons), DCR

Stephen Boynes MSc, BSc(Hons), TDCR

School of Health Studies, University of Bradford, UK

Blackwell Science © 2003 by Blackwell Science Ltd, a Blackwell Publishing Company **Editorial Offices:** 9600 Garsington Road, Oxford OX4 2DQ, UK Tel: +44 (0)1865 776868 Blackwell Publishing, Inc., 350 Main Street, Malden, MA 02148-5018, USA Tel: +1 781 388 8250 Iowa State Press, a Blackwell Publishing Company, 2121 State Avenue, Ames, Iowa 50014-8300, USA Tel: +1 515 292 0140 Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, Victoria 3053, Australia Tel: +61 (0)3 9347 0300 Blackwell Wissenschafts Verlag, Kurfürstendamm 57, 10707 Berlin, Germany Tel: +49 (0)30 32 79 060

The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. First published 2003 by Blackwell Science Ltd Library of Congress Cataloging-in-Publication Data Hardy, Maryann. Paediatric radiography/Maryann Hardy, Stephen Boynes. p. cm. Includes bibliographical references and index. ISBN 0-632-05631-2 (hbk.) 1. Pediatric radiography. 2. Diagnostic imaging. 3. Pediatrics. I. Title: Pediatric radiography. II. Boynes, Stephen. III. Title. RJ51.R3 .H37 2003 618.92'07572–dc21

2002038606

ISBN 0-632-05631-2

A catalogue record for this title is available from the British Library

Set in 10/12.5 pt Palatino by SNP Best-set Typesetter Ltd, Hong Kong Printed and bound in Great Britain by Ashford Colour Press Ltd, Gosport

For further information on Blackwell Publishing, visit our website: www.blackwellpublishing.com

Contents

Preface		ix
Acknowledgements		xi
1	Understanding childhood	1
	Physical growth	2
	Psychological and cognitive development	4
	Birth to 3 years	4
	3 to 7 years	4
	7 to 11 years	5
	Adolescents	5
	Role of family	6
	Role of play	7
	Summary	8
	References	8
2	Consent, immobilisation and health care law	9
	Children's rights	9
	Health care law	10
	Immobilisation versus restraint	11
	Holding children still – a five-point model	12
	Summary	18
	References	19
3	Radiation protection	21
	Ionising radiation regulations	21
	Patient positioning	22
	Field size and beam limitation	23
	Protective shielding	23
	Radiographic exposure parameters	25
	Focal spot size	25
	Tube filtration	26 26
	Voltage Anti-scatter grids	26 26
	Screen film systems	26
	Digital systems	20
	Automatic exposure control	27
	Automatic brightness control	27
	Summary	27
	References	28

4	The chest and upper respiratory tract	29
	Structural and functional anatomy	29
	The thorax, lungs and respiratory tract	29
	The thymus	30
	The heart	30
	Pathology of the chest and upper respiratory tract	30
	The upper/extra-thoracic airway	30
	The lower/intra-thoracic airway	35
	The chest wall and pleura	41
	Radiographic technique for the chest and upper respiratory tract	50
	Choice of projection	51
	Antero-posterior (supine)	52
	Antero-posterior (erect)	53
	Postero-anterior (erect)	54
	Radiographic assessment criteria for antero-posterior/	
	postero-anterior projections of the chest	54
	Area of interest to be included on the radiograph	54
	Rotation	55
	Lordosis	55
	Respiration	57
	Exposure Artefacts	57 57
	Supplementary radiographic projections of the chest and	- 57
	upper respiratory tract	57
	Lateral chest	57
	Lateral decubitus (antero-posterior)	58
	Lateral soft tissue neck	59
	Post-nasal space	60
	Exposure factors and radiation protection	61
	Summary	61
	References	62
5	The abdomen	63
	Anne-Marie Dixon	
	Structural and functional anatomy	63
	Gastrointestinal system	63
	Genitourinary system	64
	Gastrointestinal pathology	64
	Congenital pyloric stenosis	64
	Intussusception	65
	Appendicitis	67
	Hernia	67
	Gastroesophageal reflux	67
	Meckel's diverticulum	67

	Inflammatory bowel disease	67
	Swallowed foreign body	69
	Genitourinary system pathology	70
	Urinary tract infection	70
	Vesicoureteric reflux	72
	Hydronephrosis	72
	Posterior urethral valves	73
	Haematuria	73
	Renal agenesis	73
	Chronic renal failure	74
	Undescended testes (cryptorchidism)	74
	Abdominal mass	75
	Nephroblastoma (Wilms' tumour)	75
	Signs and symptoms of abdominal pathology	75
	Abdominal pain	75
	Vomiting	76
	Gastrointestinal bleeding	77
	Constipation	77
	Chronic diarrhoea	77
	Gastric dilatation	77
	Radiographic technique for the abdomen	78
	Plain film abdominal radiography	78
	Supine abdomen	79
	Erect abdomen	81
	Lateral decubitus	81
	Lateral abdomen	82
	Exposure factors and radiation protection	83
	Radiographic assessment criteria	84
	Fluoroscopic examinations	85
	Gastrointestinal tract examinations	85
	Barium swallow and meal	85
	Barium follow-through	86
	Small bowel enema	88
	Barium enema	88
	Renal tract examinations	89
	Intravenous urography	89
	Micturating cystourethrography	90
	Summary	92
	References	92
	Kelefences	92
6	Neonates	94
	Organisation of neonatal care	94
	Care by the radiographer	95
	Handling	95
	Infection	95

Warmth	96
Noise	97
Respiratory and cardiovascular pathology	97
Transient tachypnoea	97
Hyaline membrane disease (idiopathic respiratory	
distress syndrome – IRDS)	99
Meconium aspiration	99
Pulmonary interstitial emphysema	99
Pneumothorax	99
Pneumomediastinum	101
Pneumopericardium	101
Pneumonia	105
Congenital malformations	105
Persistent pulmonary hypertension	106
Congenital heart disease	106
Pierre Robin syndrome	107
Abdominal pathology	107
Bowel atresia	108
Malrotation	111
Volvulus	111
Meconium ileus	112
Meconium plug	112
Congenital megacolon (Hirschprung's disease)	113
Necrotising enterocolitis	113
Abdominal mass	115
Jaundice	115
Catheters, lines and tubes	115
Endotracheal tube	115
Umbilical arterial catheter	115
Umbilical venous catheter	116
Central venous catheter	116
Chest drain	117
Feeding tubes	118
Radiographic technique for the chest	118
Antero-posterior (supine)	118
Lateral chest	121
Antero-posterior in the lateral decubitus position	122
Radiographic technique for the abdomen and related	
anatomy	122
Antero-posterior (supine)	122
Lateral abdomen (supine)	123
Antero-posterior lateral decubitus abdomen	123
Inverted lateral rectum	125
Exposure factors	125
Summary	126
References	126

7	Skeletal trauma	128
	Jonathan McConnell	
	Children's fractures	128
	The epiphyses	131
	Upper limb injuries	132
	The clavicle	132
	The scapula	136
	The glenohumeral joint	136
	The proximal humerus	137
	The elbow	137
	Supracondylar fracture	139
	Condyles	140
	Epicondyles	143
	Proximal radius	143
	Proximal ulna	143
	Elbow dislocations	143
	The forearm	144
	The wrist	146
	The hand	147
	Lower limb injuries	148
	The hip	148
	Femoral shaft injuries	150
	Distal femoral injuries	151
	The knee	151 152
	The patella The tibia and fibula	152
	The toddler's fracture	152
	Stress fracture	154
	The ankle	155
	The foot	158
	The calcaneum	158
	The talus	159
	The metatarsals	159
	The phalanges	159
	The axial skeleton	159
	The cervical spine	159
	The thoracolumbar spine	162
	The pelvis	163
	Summary	165
	References	165
8	Orthopaedics	167
	The foot	168
	Metatarsus adductus/varus	168
	Talipes equinovarus (club foot)	169

	Pes planus (flat foot)	170
	Osteochondrosis and osteochondritis	170
	The knee and lower leg	171
	Osgood-Schlatter disease	171
	Sinding-Larson-Johansson syndrome	172
	Tibial bowing	172
	The hip	174
	Transient synovitis	174
	Developmental dysplasia of the hip	174
	Perthes' disease	175
	Slipped capital femoral epiphysis	177
	The upper limb	177
	Sprengel's deformity	177
	The radius and ulna	179
	Polydactyly and syndactyly	179
	The spine	180
	Discitis	180
	Kyphosis and lordosis	182
	Scoliosis	182
	Infection	183
	Osteomyelitis	183
	Septic arthritis	184
	Bone tumours	184
	Fibrous cortical defect and non-ossifying fibroma	185
	Fibrous dysplasia	186
	Osteochondroma	186
	Enchondroma	187
	Chondroblastoma	187
	Osteoid osteoma	188
	Solitary/unicameral bone cyst	188
	Osteosarcoma	189
	Ewing's sarcoma	189
	Summary	190
	References	190
9	Non-accidental injury	192
	Physical abuse	192
	Role of imaging	192
	Injury patterns	195
	Cutaneous injury	195
	Skeletal injury	196
	Summary	202
	References	204

Index

205

Preface

Paediatric radiography, despite being acknowledged as an imaging specialism, does not have a strong presence in either undergraduate or postgraduate radiography education programmes, and the availability of current published literature aimed at general radiographers is extremely limited. Consequently, the aim of *Paediatric Radiography* is to provide a reference text for radiographers and student radiographers working within general imaging departments and highlights aspects of paediatric healthcare that may influence paediatric radiography practice.

Importantly, when writing this text, we have not sought to provide a description of all paediatric imaging techniques or provide answers to all imaging dilemmas, because many of these will be dependent upon local expertise, radiographic equipment and availability of alternative imaging modalities. Instead we have attempted to raise important aspects of paediatric healthcare that should inform radiographic practice and hope that these will be discussed openly within imaging departments. As a consequence of the current shortage of paediatric radiography texts we have considered literature from other health professions, particularly nursing, and have attempted to adopt some of their good practice models. Therefore this text may also be useful for nurses, physiotherapists and junior doctors interested in the imaging of children and its role in current paediatric healthcare practice.

The development of this book has enriched our understanding of paediatric healthcare and the role of diagnostic imaging within the discipline. Our hope is that this book will help enhance paediatric radiographic practice to ensure that children attending imaging departments will receive informed and appropriate paediatric care.

Maryann Hardy and Stephen Boynes

Acknowledgements

We are particularly grateful to Jonathan McConnell of St Martin's College, Lancaster and Anne-Marie Dixon of the University of Bradford for willingly sharing their knowledge of trauma and abdominal ultrasound respectively. In addition, we would like to thank Sue Watson, Andy Scally and Gary Culpan for critically reading appropriate chapters and providing comments and suggestions.

Special thanks are also due to Dr Rosemary Arthur, paediatric consultant radiologist at the General Infirmary at Leeds for providing information and images for inclusion within the text, and Dr Leanne Elliott, consultant radiologist at Bradford Royal Infirmary, who willingly gave us regular access to the paediatric film library housed within her office!

We would also like to offer our thanks to Gill Marles, Superintendent Radiographer, Clarendon Wing X-ray Department, the General Infirmary at Leeds, for allowing us access to the department for photographic purposes, and also to those patients and their families who consented to being photographed. In addition, thanks must go to the young models who were patient with us during very long photographic sessions; Benjamin Hardy, Peter Hardy, Robin Errington, Eve Errington, Alexander Errington, Benjamin Lodge, Jody Lodge and Theo Scally.

Thanks are also due to the staff of the following imaging departments who allowed us to watch them work and were open in discussions around techniques:

Clarendon Wing X-ray Department, The General Infirmary at Leeds Sheffield Children's Hospital Manchester Children's Hospital (Booth Hall) Hull A&E Department Bradford Royal Infirmary

Chapter 1 Understanding childhood

A child is, as defined by English law, any person under the age of 18 years. It is assumed that by the age of 18 a person has reached such a level of maturity as to be capable of making fully informed decisions. However, it is the process of growth and development during childhood and adolescence that results in maturity and not chronological age alone.

Growth is the progressive development of a living being, or any part of it, from its earliest stage to maturity¹. In health care we usually restrict the term to mean the physiological and anatomical changes that occur. Growth is not constant. Different parts of the human body grow at different rates and the growth of one system can be affected by the activity of another (e.g. human growth hormone produced by the endocrine system affects growth within the musculoskeletal system). In contrast, the term development is commonly used to describe the psychological and cognitive advancement of a child and the acquisition of motor and sensory skills.

Growth and development are variables of childhood and children of the same age can be at different growth and developmental stages. Consequently, when deciding the most appropriate health care approach it is important to allow for a child's individuality and to avoid making assumptions about a child based upon preconceived ideas pertaining to specific chronological ages. However, although children of the same age can be at different developmental stages, the order in which growth and development occurs is generally consistent for all children². For example, ossification of the carpus occurs in the same order for all children, but the exact age at which the carpal bones ossify can vary markedly.

As a result of predictable developmental staging, many texts, including this one, have provided general growth and development charts that are loosely linked to chronological age. Figures 1.1 and 1.2 have been designed to highlight important stages in growth and development that may be useful to clinical radiographers and to indicate the approximate ages at which they occur. These charts are not definitive and radiographers should not rely upon them solely but should combine them with a general understanding of the child development process. The inclusion of school children and adolescents in Fig. 1.2 has been purposeful as although radiographic technique may not vary dramatically from that used for adults, the radiographer's approach to the patient will need to be modified. Appreciating the social, physical and cognitive developments that occur during these phases of childhood will assist the radiographer in selecting a suitable approach to the examination and will ensure appropriate and effective patient communication and co-operation.

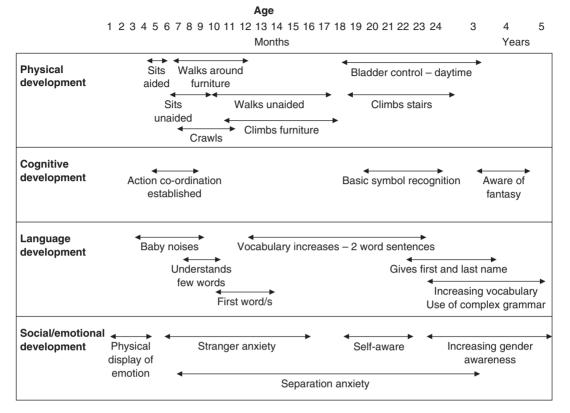


Fig. 1.1 Growth and development staging chart (birth–5 years).

Physical growth

The peculiarity of growth is what physically differentiates a child from an adult. Infants grow rapidly in the first year of life, increasing their body length by approximately 50%. Between 1 and 2 years of age, a child's height increases by approximately 12 cm and thereafter, until puberty, children increase in height by approximately 6 cm per annum. The onset of puberty is associated with a sudden and marked increase in growth (the adolescence spurt) and this phase lasts for approximately 2 to 3 years in both boys and girls.

It is not only height that varies with age but also body proportion. Each organ or system grows at a different rate and therefore the relationship between one part of a growing body and another changes over time³. These changing body proportions are evident in Fig. 1.3. It is important to note that at birth the head and upper body are larger and functionally more advanced than the lower body. As the child grows, a leaner shape with longer legs is gradually adopted and the relative size of the upper body and head decreases.

The rate at which growth occurs varies between children and is also inconsistent within an individual child. Growth is episodic rather than constant and

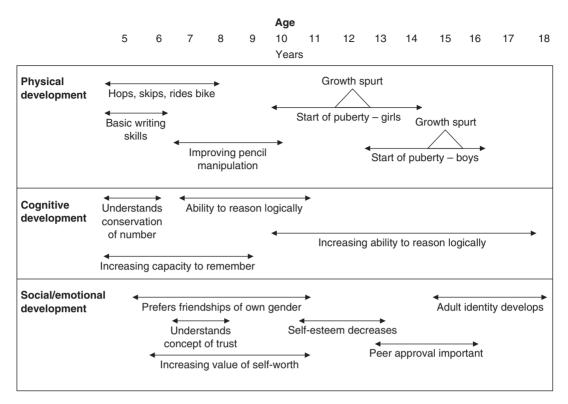


Fig. 1.2 Growth and development staging chart (5 years-18 years).

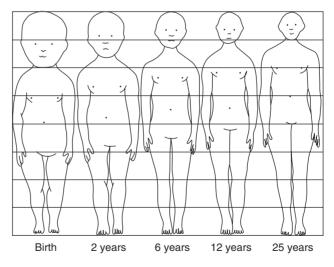


Fig. 1.3 Changes in body proportions from birth to adulthood.

therefore results in growth spurts. The natural cyclic nature of growth can be adversely affected by serious childhood illness, resulting in decreased growth, and in some children noticeable growth retardation, but upon recovery these children will usually experience a period of accelerated growth until their 'normal' height has been achieved. The causes and reasons for episodic rather than constant growth are not yet understood and research in this area continues. However, it appears that each child carries an internal 'blue print' that determines their correct growth/height at a particular age and this is likely to be linked to hereditary and environmental factors.

Psychological and cognitive development

A variety of child development theories have been proposed but, since the 1960s, education theory of child development in the UK has been dominated by Piaget's cognitive development theory. Piaget believed that the development of cognitive ability (acquisition of knowledge including perception, intuition and reasoning) occurred in sequential stages and he linked these to the chronological age of a child rather than to the intellectual or emotional maturity of the child as favoured by modern theorists.

Cognitive development, like physical growth, is individual to the child and their personal experiences. However, a child's level of cognition directly influences their understanding of, and reaction to, illness⁴ and there is considerable evidence that a child's interpretation of health and illness progresses systematically⁵. However, because not all children have the same experiences, some children will understand more than others at each age. As a result, age is not a good, nor an accurate, indicator of understanding.

Birth to 3 years

A very young child has little direct understanding of illness but during this period strong attachments to family members are made and children experience stranger and separation anxiety when in new and unfamiliar situations. To maintain the security and comfort of the child it is important to include the guardians in the care of their child. Explanation of the procedure should be made in a friendly manner and facial expressions should be welcoming. The attention span and memory of a toddler is short and therefore distraction techniques (e.g. bubbles and pop-up books) may need to be considered as a tool to ensure a high-quality examination (see Chapter 2).

3 to 7 years

Children within this age group perceive illness to be an external occurrence but different levels of perception exist and understanding is enhanced by education and experience of illness. Explanation of a procedure should be made using language that the child will understand and the use of pictures, books and toys to aid explanation⁵ and a demonstration of equipment to be used (if possible) will help allay fears and gain the child's co-operation⁶. Children in this age group will still require the support of a guardian in strange situations and this involvement should be encouraged.

7 to 11 years

The ability to understand and reason improves within this age range and any display of lack of understanding may have more to do with a lack of specific knowledge than immature development⁷. Care needs to be taken not to undermine the child and to provide appropriate information that will allow comprehension and understanding of the medical procedure. For these children, fear of the unknown is still a real problem but expression of this fear or other emotion may be difficult and so a display of 'bravado' may occur to mask inner uncertainties. It is important for radiographers to appreciate that children may 'put on an act' of confidence when in strange situations but they will still require considerable care and attention and the involvement and support of a guardian.

Adolescents

The young adolescent experiences many emotional and physical changes and early adolescence is often associated with a period of low self-esteem and self-doubt⁸. These young people are much more sensitive and socially self-conscious than any other age group and therefore have particular needs within the health care setting. A major cause of this sensitivity is the onset of puberty.

During the pubescent stage, the young adolescent is egocentric and physically self-conscious, not wanting to be perceived as different from his or her peers. Confidentiality and privacy is particularly important and reassurance and support is required from the health care professional⁹. Many young adolescents will want to have their guardian present during examination, particularly if it is an invasive procedure, but, as they progress through adolescence, they may prefer to be accompanied by a health care chaperone of the same sex. It should not be assumed that the teenager will or will not wish to be accompanied by a guardian and the choice, where possible, should be offered to the adolescent.

Middle adolescents (15–17 years) are more confident of their personal identity, although those who, through disease or illness, are perceived to be 'different from the norm' will still require substantial emotional support. During this phase, a subculture of experimentation and boundary testing exists¹⁰. A consistent approach to the examination and a non-judgemental attitude is required of the radiographer dealing with this age group. The teenager should be involved in any decision-making process regarding their health care treatment and indeed, in English law, young people of age 16 years or older have the right to consent to medical, surgical and dental treatment (see Chapter 2). The end of this phase results in transition to late adolescence/adulthood and this stage

brings with it new responsibilities and challenges (e.g. first job, learning to drive, sexual relationships). Unfortunately, it is also the stage at which the frequency of psycho-social disorders (e.g. depression) increases¹¹ and therefore radiographers need to be sensitive to the continuing emotional needs of the young patient.

Role of family

The health of a child is dependent not only on the child's physical and mental well-being, but is also influenced by cultural, social and environmental factors. In the past patients, including children, have been treated as clinical cases rather than individuals in their own right, and attention has been given almost exclusively to the medical condition. The emphasis within health care has now changed and children are treated not only as individuals but also as part of a family, community and culture. This change has not occurred overnight but has resulted from a number of initiatives to involve guardians and family in the care of hospitalised children and to help the family maintain normal functioning (family centred care)¹².

The Department of Health document Welfare of Children and Young People in Hospital¹³ and the Audit Commission document Children First: A Study of Hospital Services¹⁴ both promote family centred care as the essential ethos behind successful paediatric nursing. Unfortunately, the term 'family centred care', although commonly used within the literature, has yet to be successfully defined. However, the ethos of family centred care (involving and caring for the whole family) underpins current paediatric nursing theory and aims to facilitate care based upon the needs of the child and his/her family¹⁵. Its implementation has been successful for families with hospitalised children, and guardians are becoming more actively involved in the nursing care and treatment of their child. However, within the acute setting its success has been limited and it has been suggested that alternative approaches to family centred care need to be devised if successful partnerships between guardians and health professionals are to be achieved¹⁶. Radiographers, therefore, need to consider their working practices and introduce new ways of including guardians in the examination process if successful short-term partnerships are to be achieved.

Accepting this partnership in the care of child patients has not been easy for paediatric health professionals and, in particular, the changes that have occurred within nursing, from primarily undertaking all clinical care tasks to negotiating and agreeing care plans with guardians, have developed over a period of years. Family centred care empowers the guardians and involves them in the care and health decisions pertaining to their child¹⁷. The philosophy for this is that it is in the child's best interests to be cared for by their family as this facilitates and promotes the continuation of normal family function. Unfortunately, the reality of modern lifestyles may prevent effective family care of a hospitalised child occurring (e.g. if the child is from a single parent family with other siblings at

home then it may not be possible for the parent to be fully involved with the hospital care of the child) and it is important not to make guardians feel pressured or guilty if they are unable to fulfil the hospital carer role.

Role of play

Play is an inherent part of childhood and a child's approach to play changes greatly in line with their physical and cognitive development, most particularly during preschool years¹⁵. Play is a part of the socialisation process allowing the child to imitate and experiment in the learning of social roles and values⁷. Unfortunately, a child's ability to play can be affected by illness, and immobility can leave a child frustrated, particularly in the generally active 7–11-year age group. To counteract this, professional play specialists are increasingly being employed to provide children with play opportunities suitable for their age and ability.

The role of the play specialist is now seen as essential to the care and wellbeing of hospitalised children and their role within the multidisciplinary team is increasingly being recognised. For example, they can take time to explain and demonstrate procedures to children (e.g. catheterisation procedure for a micturating cystogram can be demonstrated on a doll), time that often radiographers cannot spare, and they can suggest many easy ideas for distracting and comforting children during an examination. Their ability to incorporate play successfully into the daily care of hospitalised children has been shown to reduce anxiety and promote normality within an alien environment. Play has also been proven to be an invaluable tool in helping children understand procedures and treatments and enables both children and guardians to gain familiarity with unusual hospital equipment¹⁸.

Unfortunately, play specialists are rarely found in radiology departments. Play equipment (books and toys) is commonly provided in waiting rooms but the standard and range of equipment varies and provision may only be made for the very youngest of children. It is essential that waiting areas are attractive and child-friendly environments. There should be opportunities for play appropriate to all ages¹⁹ and particular attention should be paid to adolescents with regard to reading material. Whatever the play equipment provided within the department, it is essential that it is regularly inspected to ensure that broken toys and torn books are removed before they become hazardous to the child. It is also a psychological barrier to effective communication if the waiting room is untidy and available toys are broken or dirty. It is important that radiographers appreciate their working environment from the patient's viewpoint – in this case the child and guardian⁵. By sitting for a period of time in a waiting area or imaging room and looking at the environment with critical eyes it may be possible for simple, cheap improvements to be identified that will provide comfort to children of all ages without causing concern to other more mature patients.

Summary

In summary, this chapter has aimed to outline some important features of growth and development in children in order to assist the radiographer in understanding the fears and anxiety of the young patient. It has also been important to introduce the concept of family centred care and emphasise the role of the family in the physical care and emotional support of a child as being of paramount importance in the modern National Health Service (NHS).

References

- 1. Sinclair, D. and Dangerfield, P. (1998) *Human Growth After Birth*, 6th edn. Oxford University Press, Oxford.
- Schickedanz, J.A. Schickedanz, D.I., Hansen, K. and Forsyth, P.D. (1993) Understanding Children: Infancy Through Pre-School, 2nd edn. Mayfield Publishing Company, London.
- 3. Behram, R.E. and Kliegman, R.M. (1998) *Essentials of Pediatrics*, 3rd edn. WB Saunders Company, London.
- 4. Swanwick, M. (1990) Knowledge and control. Paediatric Nursing 2 (5), 18-20.
- 5. Taylor, J. and Muller, D.J. (1999) *Nursing Children: Psychology, Research and Practice,* 3rd edn. Stanley Thornes (Publishers) Ltd, Cheltenham.
- 6. Carter, B. (1994) Child and Infant Pain: Principles of Nursing Care and Management. Chapman & Hall, London.
- 7. Carter, B. and Dearmun, A.K. (eds) (1995) *Child Health Care Nursing: Concepts, Theory* & *Practice.* Blackwell Science, Oxford.
- 8. Bee, H. (1999) The Growing Child, 2nd edn. Longman, Harlow.
- 9. Marks, M.G. (1998) *Broadribb's Introductory Pediatric Nursing*, 5th edn. Lippincott, New York.
- 10. McQuade, L., Huband, S. and Parker, E. (1996) *Children's Nursing*. Churchill Livingstone, London.
- 11. Department of Health (1996) Focus on Teenagers: Research Into Practice. HMSO, Norwich.
- 12. Casey, A. (1988) A partnership with child and family. Senior Nurse 8 (4), 8-9.
- 13. Department of Health (1991) *Welfare of Children and Young People in Hospital*. HMSO, London.
- 14. Audit Commission (1993) Children First: A Study of Hospital Services. HMSO, London.
- 15. Bee, H. (2000) The Developing Child, 9th edn. Allyn and Bacon, London.
- Coyne, I.T. (1996) Parent participation: a concept analysis. *Journal of Advanced Nursing* 23, 733–40.
- 17. Hutchfield, K. (1999) Family-centred care: a concept analysis. *Journal of Advanced Nursing* **29** (5), 1178–87.
- 18. Cook, P. (1999) Supporting Sick Children and Their Families. Baillière Tindall, London.
- 19. Hogg, C. (1996) *Health Services for Children and Young People: A Guide for Commissioners and Providers*, Vol. 1. Action for Sick Children, Edinburgh.