PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Language for
Distributed Computing

Volume 4

Frank Buschmann,
Siemens, Munich, Germany

Kevlin Henney,
Curbralan, Bristol, UK

Douglas C. Schmidt,
Vanderbilt University, Tennessee, USA

Aot
John Wiley & Sons, Led

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Language for
Distributed Computing

Frank Buschmann,
Siemens, Munich, Germany

Kevlin Henney,
Curbralan, Bristol, UK

Douglas C. Schmidt,
Vanderbilt University, Tennessee, USA

1807
£|SWILEY [}
ij2007 E

~~~~~~~~~~~

John Wiley & Sons, Ltd



Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777
Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or
under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court
Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the
Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The
Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Front cover Image Copyright © 2007 Yann Arthus-Bertrand/Altitude

Designations used by companies to distinguish their products are often claimed as trademarks.
All brand names and product names used in this book are trade names, service marks,
trademarks or registered trademarks of their respective owners. The Publisher is not associated
with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN-13: 978-0-470-05902-9 (hbk)

Typeset in 10/13 Bookman-Light by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Bell & Bain, Glasgow

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.


www.wiley.com

For Anna, Bebé', and Martina

Frank Buschmann

For Carolyn, Stefan, and Yannick

Kevlin Henney

For Lori, Bronson, Mom, and Dad

Douglas C. Schmidt

t Bebé, July 3, 1999






Table of Contents

Part 1

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4

3.1
3.2

Foreword ... .. ..........
About ThisBook ... ... .....
About The Authors . ... .....

Guide To The Reader .. ... ...

Some Concepts . ... ........

On Patterns and Pattern Languages

Patterns Introduced . ... .. ... ..
Inside Patterns . . . ... . ... ....
Between Patterns . . .. ... ... ..
Into Pattern Languages . . ... .. ..
Patterns Connected . . ... ... ...

On Distributed Systems . ... ..
Benefits of Distribution . ... .. ..
Challenges of Distribution . ... ...
Technologies for Supporting Distribution
Limitations of Middleware .. ... ..

On the Pattern Language ... ...
Intent, Scope, and Audience . . . ..
Origins and Genesis . . ... .. ...

oooooo

------

oooooo

oooooo

-----

------

------

10
13
15

17
18
20
22
32

33
34
35



viii

3.3
3.4
3.5

Part II

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1

6.2

6.3
6.4
6.5
6.6
6.7
6.8

Table of Contents

Structure and Content . . . .. ... .. .. ...
Presentation . ... ... .. .. ... ...,
Practical Use . . . . . . . . . . . ... .. .....

AStory . . . . . i e e e e e e e e e e

Warehouse Management Process Control

System Scope . . ... Lo

Warehouse Management Process Control

Baseline Architecture ... ...........
Architecture Context . . .. ... ... ......
Partitioning the Big Ball of Mud . . . ... ...
Decomposing the Layers . . . .. ... ... ...

Accessing Domain Object Functionality

Bridging the Network . . ... ... ... ... ...
Separating User Interfaces . ... ... ... ..
Distributing Functionality . ... ... ... ...

Supporting Concurrent Domain Object Access

Achieving Scalable Concurrency . .. ... ...

Crossing the Object-Oriented /Relational Divide
Configuring Domain Objects at Runtime

Baseline Architecture Summary . ... ... ..

Communication Middleware ... .......

A Middleware Architecture for Distributed

Systems . . . ...

Structuring the Internal Design of the

Middleware . . . . . . ... ... ...

Encapsulating Low-level System Mechanisms

Demultiplexing ORB Core Events . . ... . ..
Managing ORB Connections . . .. ... .. ..
Enhancing ORB Scalability . ... ..... ...

Implementing a Synchronized Request Queue
Interchangeable Internal ORB Mechanisms

36
44
49

53

57
58
60

65
66
67
68
71
72
76
79
82
85
87
89
90

95
96

100
103
105
108
111
114
116



Table of Contents

6.9
6.10
6.11

7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

8

Part III

9

Consolidating ORB Strategies . .. ... ... ..
Dynamic Configuration of ORBs . . . .. .. ..
Communication Middleware Summary . .. ..

Warehouse Topology ... ...........
Warehouse Topology Baseline . ... ... ...
Representing Hierarchical Storage . ... .. ..
Navigating the Storage Hierarchy . ... .. ..
Modeling Storage Properties . . .. ... .. ...
Varying Storage Behavior . . ... ... ... ..
Realizing Global Functionality . . ... ... ..
Traversing the Warehouse Topology . . . .. ..
Supporting Control Flow Extensions . . . . ..
Connecting to the Database . ... ... ... ..
Maintaining In-Memory Storage Data . . . . ..
Configuring the Warehouse Topology . ... ..
Detailing the Explicit Interface . . . ... .. ..

Warehouse Topology

Summary ... .. .....

The Story Behind The Pattern Story ... ..

The Language . .

From Mud To Structure ............

Domain Model ** .
Layers ** . . . ...

Model-View-Controller ** . . . . . .. .. ... ..
Presentation-Abstraction-Control . . ... . ..

Microkernel ** ..
Reflection * . . ..
Pipes and Filters **
Shared Repository **
Blackboard . . ..
Domain Object **

ix

118
121
124

129
130
131
133
135
137
140
142
144
146
147
149
151
153

157

163

167
182
185
188
191
194
197
200
202
205
208



10

11

12

Distribution Infrastructure ... ...
Messaging ** . . ... ... L.
Message Channel ** . . . ... ... ....
Message Endpoint ** . . . ... ... ...
Message Translator ** . . . .. ... ...
Message Router ** . . . . ... ... ...
Publisher-Subscriber ** . . . .. ... ..
Broker ** . . ... o
Client Proxy ** . . ... ... ... .....
Requestor ** . . .. ...
Invoker ** . . .. ..o
Client Request Handler ** . . . ... ...
Server Request Handler ** . .. ... ...

Event Demultiplexing and Dispatching

Reactor ** . . . .. ... ...
Proactor * . . ... ... ... .. ... ...
Acceptor-Connector ** . . . . ... .. ..
Asynchronous Completion Token ** . . .

Interface Partitioning ... .......
Explicit Interface ** . .. ... .. .....
Extension Interface ** . ... .. ... ..
Introspective Interface ** . . . .. ... ..
Dynamic Invocation Interface * . . .. ..
Proxy ** . . . ... .. .
Business Delegate ** . . . ... ... ...
Facade ** . ... ... ... ... ......
Combined Method ** . . . ... ... ...
Iterator ** . . . . ... ...
Enumeration Method ** . . ... ... ..
Batch Method ** . . .. ... ... .....

Table of Contents

211
221
224
227
229
231
234
237
240
242
244
246
249

253
259
262
265
268

271
281
284
286
288
290
292
294
296
298
300
302



Table of Contents

13

14

15

16

Component Partitioning
Encapsulated Implementation **

Whole-Part **
Composite **
Master-Slave *

Half-Object plus Protocol **
Replicated Component Group *

Application Control
Page Controller **
Front Controller ** .
Application Controller **
Command Processor **
Template View **
Transform View **
Firewall Proxy **
Authorization **

Concurrency
Half-Sync/Half-Async **
Leader/Followers ** .
Active Object **
Monitor Object **

Synchronization
Guarded Suspension **
Future **
Thread-Safe Interface *

Double-Checked Locking

Strategized Locking **
Scoped Locking **
Thread-Specific Storage

ooooooooooooooo

xi

305
313
317
319
321
324
326

329
337
339
341
343
345
347
349
351

353
359
362
365
368

371
380
382
384
386
388
390
392



xii

17

18

19

Copied Value ** . ... ..
Immutable Value ** . . ..

Object Interaction .. ..
Observer ** . . . ... ...
Double Dispatch ** . . ..
Mediator * . . ... ... ..
Command ** .. ... ...
Memento ** . .. ... ...
Context Object ** . . . ..
Data Transfer Object ** .
Message ** . ... ... ..

Adaptation and Extension

Bridge ** . .. ... ... ..
Object Adapter ** . . . ..
Chain of Responsibility * .
Interpreter . .. ... ...
Interceptor ** . . ... ...
Visitor ** . . .. ... ...
Decorator . ... ... ...

Execute-Around Object **

Template Method * C
Strategy ** . ... ... ..
Null Object ** . . . ... ..
Wrapper Facade ** C

Table of Contents

Declarative Component Configuration *

Modal Behavior . .....
Objects for States * . . . .
Methods for States * C
Collections for States ** .

394
396

399
405
408
410
412
414
416
418
420

423
436
438
440
442
444
447
449
451
453
455
457
459
461

463
467
469
471



Table of Contents

20

21

22

Resource Management ... ..........
Container * . ... ... ......
Component Configurator * . . . .
Object Manager ** . ... ... ..
Lookup ** . . ... ... ......
Virtual Proxy ** . ... ... ...
Lifecycle Callback ** . .. .. ..
Task Coordinator * . . . ... ..
Resource Pool ** . . . .. ... ..
Resource Cache ** . . .. ... ..
Lazy Acquisition ** . . . ... ..
Eager Acquisition ** . . . . .. ..
Partial Acquisition * . .. ... ..
Activator ** . . ... ..o
Evictor ** . .. ... ...
Leasing ** . .. .. ... ... ...

Automated Garbage Collection **

Counting Handle ** . . . ... ..
Abstract Factory ** . . . ... ..
Builder* .. ... ... .......
Factory Method ** . ... ... ..
Disposal Method ** . . ... ...

Database Access . . ... .. ...
Database Access Layer ** C e
Data Mapper ** . ... ... ...
Row Data Gateway ** . .. .. ..
Table Data Gateway ** . . .. ..
Active Record . . . ... ... ...

A Departing Thought . .............

xiii

473
488
490
492
495
497
499
501
503
505
507
509
511
513
515
517
519
522
525
527
529
531

533
538
540
542
544
546

549



xiv

Table of Contents

Glossary . . .. . . . i i i ittt
References . ...................
Index of Patterns . . ... ...........
Indexof Names . .................

SubjectIndex ... ................

553

573

587

593

595



Foreword

The patterns movement has been around for over a decade now, and
has gone through the usual cycle of inflated expectations, backlash,
and quiet acceptance. Frank, Doug, and Kevlin have been there the
whole time, lauded and scoffed at, but above all quietly collecting
good ideas from the field and describing them. The POSA series of
books is rightly regarded as one of the most solid elements in the
patterns literature, and every volume has a space in my library.

Earlier POSA volumes were traditional patterns books, describing
patterns in a range of specific areas, mostly with patterns that hadn’t
been written up before. This book is different. Distributed Computing
is a very wide topic and even the patterns we've captured so far is far
more than would fit in a single volume. Indeed they are spread over
multiple books, both within and outside the POSA series. This book’s
mission is to pull these patterns together. As a result you've got many
more patterns here than you’d usually find, and consequentially a
much terser description. Some of the patterns described here aren’t
primarily about distribution, but have some relevance for distributed
system work. As a result the descriptions in this book highlight that
usage, summarizing a pattern in a distributed systems context.

This book is also about more than the individual patterns—it’s also
about how they relate. Any system contains multiple patterns used
together, but I for one find it harder to talk about inter-relationships
than the individual patterns. A book like this cannot dodge this
question, so here youll find a lot of advice on how to combine
patterns with distribution.



Foreword

Distribution is a hard problem and often causes trouble. Indeed I'm
often quoted for my tongue-in-cheek First Law of Distributed Object
Design: ‘Don’t distribute your objects.” I wrote my first law for a good
reason—distribution makes software harder, and as a result I always
recommend avoiding it when you can. But however great my desire to
question every distribution boundary, the reality is that distribution
is an essential part of many software systems. And since distribution
is hard, it’s particularly important to take care over its design—which
is why this book is also an important addition to a developer’s library.

Martin Fowler



About This Book

Distributed computing is connecting the world and leveling playing
fields [FriO6]. The ubiquity of the Web and e-commerce today exem-
plify a common motivation for distributed computing: the ability to
connect to and access vast quantities of geographically dispersed
information and services. The popularity of instant messaging and
chat rooms on the Internet underscores another common motiva-
tion: staying connected to family, friends, colleagues, and customers.
Other motivators for distributed computing include enhancing per-
formance, scalability, and fault tolerance, as well as reducing costs
by sharing expensive hardware and peripherals.

Given the importance of distributed computing in our professional
and personal lives, many patterns in the software literature focus
on this topic [POSA1l] [POSA2] [POSA3] [Lea99] [VSWO02] [VKZ04]
[HoWoO03] [PLoPD1] [PLoPD2] [PLoPD3] [PLoPD4] [PLoPD5]. Unfor-
tunately, many of these patterns are described in relative isolation,
referencing few other patterns, most of which are in the same publica-
tion. Despite the utility of each individual pattern, there is no holistic
view of distributed computing that emphasizes how relevant patterns
complete and complement each other. Building complex distributed
systems therefore remains largely a dark art mastered only by a few
wizards and gurus.

To provide a more holistic view, this book—the fourth volume of
the Pattern-Oriented Software Architecture (POSA) series—describes
a single pattern language that links many patterns relevant to
distributed computing. Each pattern in this language either deals
directly with distributed computing, or plays an important support-
ing role in that context. Our pattern language thus provides a guide
to—and a communication vehicle for—the best practices in key areas
of distributed computing.



xviii About This Book

Intended Audience

Our focus is on the design and implementation of software for dis-
tributed computing systems. The main audience for this book is
therefore professional software architects or advanced students who
are involved in developing software for distributed computing sys-
tems, both designing new applications and improving and refactoring
existing ones. Our pattern language presents a rich set of patterns
aimed at helping architects to create sustainable designs for dis-
tributed systems, and which address their requirements thoughtfully
and professionally.

A secondary audience for this book is application developers who
use component and communication middleware in their professional
work. Our pattern language provides developers with an overview of
the current state-of-the-practice in designing distributed systems, so
that they can better understand how to use middleware effectively. A
third group who can benefit from our pattern language is project and
product managers. The language can give managers a deeper under-
standing of the essential capabilities of systems whose development
they are leading, and provide a useful vocabulary for communicating
with software architects and developers.

We do not however intend end-users or customers to use our pattern
language directly. While judicious use of real-world metaphors might
make the material accessible to this audience, it would require an
alternative presentation of the language. Moreover, the book is not
intended as a general tutorial on distributed computing. Although
we discuss many aspects of this subject, and include an extensive
glossary, readers need prior familiarity with core distributed com-
puting concepts and mechanisms such as deadlock, transactions,
synchronization, scheduling, and consensus. Additional information
on topics related to distributed computing, such as the design of
networking protocols and operating systems, can be found in the
references.



About This Book xix

Structure and Content

This book is arranged in three parts: some concepts, a story, and the
pattern language itself.

Part I, Some Concepts, introduces the context of the book: the core
pattern concepts necessary for an understanding of the book, an
overview of the benefits and challenges of distributed computing, a
summary of technologies for supporting distribution, and an intro-
duction to our pattern language.

Part II, A Story, describes how a real-world process control system
for warehouse management was designed using our pattern lan-
guage for distributed computing. The story focuses on three areas
of this software system: its baseline architecture, its communication
middleware, and its warehouse topology representation.

Part III, The Language, forms the main part of the book. It contains
a pattern language for distributed computing that addresses the
following technical topics relevant to the construction of distributed
systems:

o Specifying an initial software baseline architecture
e Understanding communication middleware
» Event demultiplexing and dispatching

« Interface partitioning

o Component partitioning

o Application control

¢ Concurrency

o Synchronization

» Object interaction

o Adaptation and extension

e Modal behavior

¢ Resource management

o Database access.



About This Book

Each chapter introduces the topic area it addresses, summarizes key
challenges, and then presents a set of patterns that help master these
challenges. In total, our pattern language for distributed computing
contains 114 patterns and connects to more than 150 patterns pre-
sented in other publications. It is thus one of the largest—if not the
largest—software pattern language documented to date.

Although distributed computing is the language’s focus, many parts
of it have broader applicability. For example, most applications must
be adaptable and extensible in some way, and each software system
needs well-designed interfaces and components. For selected tech-
nical areas, our pattern language can therefore serve as a general
guide to the best practices in modern software development, and is
therefore not limited to distributed computing.

The book ends with a short reflection on our pattern language for dis-
tributed computing, a glossary of frequently used terms, an extensive
list of references to work in the field, a pattern index, a general subject
index, and an index that lists everyone who helped us shape the book.

There are undoubtedly properties and patterns of distributed sys-
tems that we have omitted, or which will emerge over time through
the application and extension of the pattern language in practice.
If you have comments, constructive criticism, or suggestions for
improving the style and content of this book, please send them to
us via electronic mail to siemens-patterns@cs.uiuc.edu. Guide-
lines for subscription can be found on the patterns home page
at http://hillside.net/patterns/. This link also provides an
important source of information on many aspects of patterns, such
as available and forthcoming books, conferences on patterns, papers
on patterns, and so on.



About This Book xxi

Acknowledgments

It is a pleasure for us to thank the many people who supported us in
creating this book, either by sharing their knowledge with us or by
reviewing earlier drafts of its various parts.

Champion review honors go to Michael Kircher, our shepherd, who
reviewed all our material in depth, focusing on its correctness, com-
pleteness, consistency, and quality. Michael’s feedback significantly
increased the quality of the material in this book.

In addition, we presented parts of the language at three EuroPLoP
pattern conferences, and also to several distribution and pattern
experts. Ademar Aguimar, Steve Berczuk, Alan O’Callaghan, Ekata-
rina Chtcherbina, Jens Coldewey, Richard Gabriel, lan Graham,
Prashant Jain, Nora Koch, Doug Lea, Klaus Marquardt, Andrey
Nechypurenko, Kristian Sgrensen, James Siddle, Michael Stal, Steve
Vinoski, Markus Voélter, Oliver Vogel, and Uwe Zdun provided us
with extensive feedback, which led to many minor—and also some
major—revisions of the language and its presentation.

Many thanks go to Mai Skou Nielsen, who took the photos of Kevlin
and Frank when they met at the JAOO 2006 conference in Aarhus,
Denmark. Anton Bregger helped locate details about the photo we
present in the chapter on interface partitioning patterns. Publicis
Kommunikationsagentur GmbH and Lutz Buschmann permitted us
to use photos from their collections in this book.

Special thanks go to Lothar Borrmann and Reinhold Achatz for their
managerial support and backing at the software engineering labs of
Corporate Technology of Siemens AG, Munich, Germany.

Very special thanks go to our editor, Sally Tickner, our former editor
Gaynor Redvers-Mutton, and everyone else at John Wiley & Sons
who made it possible to publish this book. It was Gaynor who con-
vinced us to write this POSA volume despite heavy loads in our
daily work as software professionals. Sally, in turn, had an enormous
amount of patience with us during the years we spent completing
the manuscript. Very special thanks also go to Steve Rickaby, of



About This Book

WordMongers Ltd, our copy editor, for enhancing our written mate-
rial. This is the fourth POSA book fostered by Steve, and we look
forward to working with him on forthcoming volumes.

Last but not least, we thank our families for their patience and
support during the writing of this book!



About The Authors

Frank Buschmann

Frank Buschmann is Senior Principal Engineer at Siemens Corpo-
rate Technology in Munich, Germany. His research interests include
object technology, software architecture, product lines, model-driven
software development, and patterns. He has published widely in all
these areas, most visibly in his co-authorship of the first two POSA
volumes [POSA1] [POSA2], and the last two POSA volumes, this book
and [POSAS5]. Frank was a member of the ANSI C++ standardization
committee X3J16 from 1992 to 1996, initiated the first EuroPLoP
conference in 1996, co-edited several books on patterns [PLoPD3]
[SFHBSO06], and serves as an editor of the Wiley Series in Software
Design Patterns. In his development work at Siemens, Frank has led
architecture and implementation efforts for several large-scale indus-
trial software projects, including business information, industrial
automation, and telecommunication systems.

When not at work Frank spends most of his time enjoying life with his
wife Martina and daughter Anna, having fun riding his horse Eddj,
watching the time go by in Munich beer gardens, getting excited when
watching his favorite soccer team Borussia Dortmund, dreaming
when listening to a performance at the Munich opera, and relaxing
with rare Scotch single malts before bedtime.

Kevlin Henney

Kevlin Henney is an independent consultant based in Bristol, UK. His
work involves teaching, mentoring, and practicing across his areas
of interest, which include programming languages and techniques,
software architecture, patterns, and agile development. His clients



About The Authors

range from global firms to smaller start-ups that are involved in the
worlds of systems software, telecommunications, embedded systems,
middleware development, business information, and finance.

Kevlin is a regular speaker at software conferences, and has also
been involved with the organization of many conferences, including
EuroPLoP. He has been involved with the C++ standard through the
BSI and ISO, as well other language standardization efforts. Kevlin is
also known for his writing, which has included conference papers and
regular (and irregular) columns for many publications, including C++
Report, C/C++ Users Journal, Java Report, JavaSpelktrum, Application
Development Advisor, The Register, EXE, and Overload.

In what passes for spare time, Kevlin enjoys spending time with
Carolyn, his wife, and Stefan and Yannick, their two sons. This takes
in Lego, toy fixing, reading, and the odd beer or glass of wine.

Douglas C. Schmidt

Doug Schmidt is a Professor of Computer Science and Associate Chair
of the Computer Science and Engineering program at Vanderbilt Uni-
versity, Nashville, Tennessee, USA. His research focuses on patterns
and pattern languages, optimization principles, and empirical analy-
sis of techniques that facilitate the development of quality of service
(QoS)-enabled component middleware and model-driven engineering
tools that support distributed real-time and embedded systems.

Doug is an internationally recognized expert on patterns, object-
oriented frameworks, real-time middleware, modeling tools, and open-
source development. He has published over 300 papers in top
technical journals and conferences, has co-authored books on pat-
terns [POSA2] and C++ network programming [SHO2] [SHO3], and has
also co-edited several popular books on patterns [PLoPD1] and frame-
works [FJS99a] [FJS99b]. In addition to his academic research, Doug
has led the development of ACE, TAO, CIAO, and CoSMIC, which are
widely used open-source middleware frameworks and model-driven



About The Authors XXV

engineering tools that contain a rich set of reusable components,
implemented using the patterns presented in this book.

In his rare spare time, Doug enjoys spending time with his wife
Lori and their son Bronson, as well as weight-lifting, guitar playing,
debating world history and politics, and driving Chevy Corvettes.






Guide To The Reader

You can have it all. You just can’t have it all at once.

Oprah Winfrey

This book is structured so that you can read it in various ways.
The most straightforward way is to read it from cover-to-cover. If
you know where you want to go, however, you can choose your own
route through the book. In this case, the following hints can help you
decide which topics to focus on and the order in which to read them.



xxviii Guide To The Reader

Introduction to Patterns and Pattern Languages

This book presents a distributed computing pattern language, which
is a family of interrelated patterns that define a process for sys-
tematically resolving problems that arise when developing software
for distributed systems. We designed the book to help you use these
patterns in your daily software development activities, to create work-
ing, sustainable software architectures for distributed systems. It is
not a comprehensive tutorial about patterns and pattern languages
in general, however, since we assume that you are familiar with
both concepts.

If this book is your initial exposure to patterns, we suggest you first
read the introduction to patterns in A System of Patterns [POSA1]
and Design Patterns [GoF95]. Both books explore the fundamental
concepts and terminology related to patterns for software architec-
tures and designs. If you are familiar with patterns, but not with
pattern languages, we recommend you read Chapter 1, On Patterns
and Pattern Languages, and the white paper on Software Patterns by
James O. Coplien [Cope96], which outline the concept of pattern lan-
guages in enough detail to allow you to benefit from the distributed
computing pattern language this book. Both the above briefly also
explore advanced aspects of the pattern concept that go beyond the
fundamental ideas presented in [POSA1] and [GoF95].

Introduction to Distributed Computing

This book assumes that you are familiar with the key concepts
and mechanisms of distributed computing. Chapter 2, On Distributed
Systems, describes briefly the benefits and challenges of distributed
computing and summarizes technologies for supporting distribution,
but does not discuss distributed computing and distributed systems
in detail. The chapter is intended to provide the overall theme of
the book: to achieve the benefits of distributed computing, you must
explicitly and thoughtfully address the challenges associated with it,
guided by patterns in our language.



Guide To The Reader xxix

If you need more background information on distributed computing,
we recommend Distributed Systems: Principles and Paradigms by
Andrew S. Tanenbaum and Maarten van Steen [TaSte02] and Reliable
Distributed Systems by Ken Birman [Bir05].

Introduction to the Pattern Language for Distributed

Computing

Before you start reading all or selected patterns in our pattern lan-
guage, we suggest you read Chapter 3, On the Pattern Language. This
chapter introduces you to our language as a whole, focusing on:

o Its intent, scope, and audience.

o The general structure of the language, the key topics and challenges
in distributed computing it addresses, and the concrete patterns it
contains.

e The pattern form and notation we use to describe and illustrate the
patterns in the language.

The chapter also serves as a general map to the pattern language, so
that you will know where you are when reading a particular pattern
or set of patterns. This map helps to keep you from losing the forest
for the trees when reading specific details on each pattern.

The Pattern Language in Action

Part II of this book, A Story, presents a concrete example of how our
pattern language for distributed computing can be applied in practice
on a warehouse management process control system. Through the
story of the construction of a real-world system we illustrate how our
pattern language for distributed computing can inform the architec-
tures and developers of high-quality software systems. If you learn
best by example, we recommend you to read the story before you
read the pattern language in depth, although the story also works



Guide To The Reader

well when read after the language. The story demonstrates how our
pattern language can support the creation and understanding of:

o Baseline architectures for distributed systems that effectively parti-
tion their functional and infrastructure responsibilities, and enable
the systems to meet their quality of service requirements.

o Communication middleware that allows the components of a dis-
tributed system to interact with one another efficiently, robustly,
and portably.

o The detailed design of concrete components in a distributed sys-
tem that support their assigned responsibilities and meet their
requirements.

Although the story is self-contained, the best way to digest it is to
read a specific section until the fundamental solution statement for
the problem addressed in that section is described. At this point, we
recommend you read the pattern synopsis in Part III if you are not
familiar with it. Once you are comfortable with your understanding of
the pattern, continue reading the story to see how the chosen pattern
is applied in the warehouse management system, and consider which
alternative patterns were not selected, and why.

The Pattern Language in Detail

Part III of the book, The Language, contains the pattern language for
distributed computing that addresses key technical topics relevant to
the construction of distributed systems. Here are some ways to read
this material:

o Start-to-finish. The technical topics covered by the language and
the patterns that address them are (roughly) presented in their
order of relevance and application when building distributed sys-
tems.

o Topic-wise. If you are interested in a specific technical topic, such
as the partitioning of components, you can read the corresponding
chapter of the language. An introduction lists and discusses the
challenges associated with the technical concerns, introduces the
patterns that help master these challenges, and contrasts and



Guide To The Reader xxxi

compares them regarding their commonalities and differences. The
condensed summaries of the patterns themselves, the main part of
the chapter, follows this introduction.

e Pattern-wise. Finally, if you are interested in a specific pattern,
you can use the inner front cover or the index to locate it in the
language and read it directly.

The pattern summaries do not address detailed implementation
issues, such as how a pattern is realized in a specific programming
language or on a specific middleware platform. Each pattern sum-
mary presents and discusses the essential problem and the forces
the pattern addresses, the key solution it embodies, and the con-
sequences it introduces. In addition, each pattern is linked with all
other patterns of the language that help implement it, as well as with
other patterns whose implementation it can support. Throughout this
book, where a pattern from the language is mentioned, it is followed
by its page reference in parentheses. If you are interested in specific
realization details, we recommend that you consult the pattern’s orig-
inal source(s), which we reference for each pattern. Throughout this
book, where a pattern from the language is mentioned, it is followed
by its page reference in parentheses.






Patterns described in this boolk

From Mud To Structure: DoOMAIN MODEL (182), LAYERS (185), MODEL-VIEW-CONTROLLER (188),
PRESENTATION-ABSTRACTION-CONTROL (191), MICROKERNEL (194), REFLECTION (197), PIPES AND FILTERS
(200), SHARED REPOSITORY (202), BLACKBOARD (205), and DoMAIN OBJECT (208).

Distribution Infrastructure: MESSAGING (221), MESSAGE CHANNEL (224), MESSAGE ENDPOINT (227),
MESSAGE TRANSLATOR (229), MESSAGE ROUTER (231), BROKER (237), CLIENT PROXY (240), REQUESTOR
(242), INVOKER (244), CLIENT REQUEST HANDLER (246), SERVER REQUEST HANDLER (249), and
PUBLISHER-SUBSCRIBER (234).

Event Demultiplexing and Dispatching: REACTOR (259), PROACTOR (262), ACCEPTOR-CONNECTOR
(265), and ASYNCHRONOUS COMPLETION TOKEN (268).

Interface Partitioning: EXPLICIT INTERFACE (281), EXTENSION INTERFACE (284), INTROSPECTIVE
INTERFACE (286), DyNAMIC INVOCATION INTERFACE (288), PrROXY (290), BUSINESS DELEGATE (292),
FacapE (294), COMBINED METHOD (296), ITERATOR (298), ENUMERATION METHOD (300), and BATCH
METHOD (302).

Component Partitioning: ENCAPSULATED IMPLEMENTATION (313), WHOLE-PART (317), COMPOSITE (319),
MASTER-SLAVE (321), HALF-OBJECT PLUS PrROTOCOL (324), and REPLICATED COMPONENT GROUP (326).

Application Control: PAGE CONTROLLER (337), FRONT CONTROLLER (339), APPLICATION CONTROLLER
(341), CoMMAND PROCESSOR (343), TEMPLATE VIEW (345), TRANSFORM VIEW (347), FIREWALL PROXY
(349), and AUTHORIZATION (351).

Concurrency: HALF-SyNC/HALF-ASYNC (359), LEADER/FOLLOWERS (362), ACTIVE OBJECT (365),
MONITOR OBJECT (368).

Synchronization: GUARDED SUSPENSION (380), FUTURE (382), THREAD-SAFE INTERFACE (384), DOUBLE-
CHECKED LOCKING (386), STRATEGIZED LOCKING (388), SCOPED LOCKING (390), THREAD-SPECIFIC
STORAGE (392), CoPIED VALUE (394), and IMMUTABLE VALUE (396).

Object Interaction: OBSERVER (405), DOUBLE DispATCH (408), MEDIATOR (410), MEMENTO (414),
CONTEXT OBJECT (416), DATA TRANSFER OBJECT (418), COMMAND (412), and MESSAGE (420).

Adaptation and Extension: BRIDGE (436), OBJECT ADAPTER (438), INTERCEPTOR (444), CHAIN OF
RESPONSIBILITY (440), INTERPRETER (442), VISITOR (447), DECORATOR (449), TEMPLATE METHOD (453),
STRATEGY (455), NULL OBJECT (457), WRAPPER FACADE (459), EXECUTE-AROUND OBJECT (451), and
DECLARATIVE COMPONENT CONFIGURATION (461).

Object Behavior: OBJECTS FOR STATES (467), METHODS FOR STATES (469), and COLLECTIONS FOR
STATES (471).

Resource Management: OBJECT MANAGER (492), CONTAINER (488), COMPONENT CONFIGURATOR (490),
LoOKUP (495), VIRTUAL PROXY (497), LIFECYCLE CALLBACK (499), TASK COORDINATOR (501), RESOURCE
PooL (503), RESOURCE CACHE (505), Lazy AcQUISITION (507), EAGER ACQUISITION (509), PARTIAL
AcQUISITION (511), ACTIVATOR (513), EVICTOR (515), LEASING (517), AUTOMATED GARBAGE COLLECTION
(519), COUNTING HANDLE (522), ABSTRACT FACTORY (525), BUILDER (527), FACTORY METHOD (529),
and DisPosAL METHOD (531).

Database Access: DATABASE ACCESS LAYER (538), DATA MAPPER (540), Row DATA GATEWAY (542),
TABLE DATA GATEWAY (544), and ACTIVE RECORD (546).






Some Concepts

Language is a city to the building of which
every human being brought a stone.

Ralph Waldo Emerson

The first part of this book provides the context for our pattern lan-
guage for distributed computing. We outline the concepts of patterns
and pattern languages briefly, introduce the benefits and challenges
of distributed computing, and provide an overview of, and introduc-
tion to, the pattern language itself.



Some Concepts

This book focuses on patterns and a pattern language for distributed
computing. To understand these patterns and the language, and
to apply it successfully when building production distributed sys-
tems, knowledge of the relevant concepts in patterns and distributed
computing, as well as of available distribution technologies, is both
helpful and necessary. In addition, using the pattern language effec-
tively in development projects requires you to understand its general
scope, structure, content, and presentation.

The first part of the book therefore provides an overview of these
concepts, and also provides an overview of our pattern language for
distributed computing.

e Chapter 1, On Patterns and Pattern Languages, outlines all aspects
of the pattern and pattern language concepts that are relevant for
understanding our pattern language for distributed computing. We
introduce the fundamental concept of patterns, discuss core prop-
erties of this concept, and show how patterns can be connected
to form pattern languages, networks of patterns that work together
systematically to address a set of related and interdependent soft-
ware development concerns.

o Chapter 2, On Distributed Systems, provides an overview of the
key benefits and challenges of building distributed systems, and
outlines which of those challenges are addressed by various genera-
tions of distribution technologies, how the technologies address the
challenges, and which remain unresolved and must be addressed
by the architectures of applications in distributed systems.

e Chapter 3, On the Pattern Language, introduces our pattern lan-
guage for distributed computing. We address the language’s intent
and scope to define its general applicability. An overview of the
thirteen problem areas and 114 patterns illustrates the concrete
structure and scope of the language. Information is given about the
language’s presentation, such as the pattern form and notations
used, along with hints about its use to support applications in
production development projects.

The three chapters in this part set the context for the entire book:
the pattern story about a process control system for warehouse
management that we tell in Part II, A Story, and the pattern language
itself, in Part IlI, The Language.



On Patterns and Pattern
Languages

Neither can embellishment of language be found
without arrangement and expression of thoughts,
nor can thoughts be made to shine

without the light of language.

Marcus Tullius Cicero, Roman stateman, orator,
and philosopher, 106-43 BC

In this chapter we introduce patterns briefly, including their history,
along with a number of pattern concepts. We examine the anatomy
of a pattern, what it offers, and what drives it. We explore the
relationships we often find between patterns. We conclude with a
discussion of pattern languages, what they are, and how they can be
presented and used.



4 On Patterns and Pattern Languages

1.1 Patterns Introduced

From a design perspective, software is often thought of in terms of
its parts: functions, source files, modules, objects, methods, classes,
packages, libraries, components, services, subsystems, and so on.
These all represent valid views of the different kinds and scales
of units of composition with which developers work directly. These
views focus on the parts, however, and de-emphasize the broader
relationships and the reasoning that make a design what it is. In
contrast, patterns have become a popular and complementary way
of describing and evolving software designs, capturing and naming
proven and common techniques. They emphasize the why, where,
and how of designs, not just the what.

A pattern documents a recurring problem-solution pairing within
a given context. A pattern, however, is more than either just the
problem or just the solution structure: it includes both the problem
and the solution, along with the rationale that binds them together.
A problem is considered with respect to conflicting forces, detailing
why the problem is a problem. A proposed solution is described in
terms of its structure, and includes a clear presentation of the con-
sequences—both benefits and liabilities—of applying the solution.

The recurrence of patterns is important—hence the term pattern—as
is the empirical support for their designation as patterns. Capturing
the commonality that exists in designs found in different applica-
tions allows developers to take advantage of knowledge they already
possess, applying familiar techniques in unfamiliar applications. Of
course, by any other name this is simply ‘experience.” What takes
patterns beyond personal experience is that patterns are named and
documented, intended for distilling, communicating, and sharing
architectural knowledge.

From Building Architecture to Software Architecture

Although patterns are now popular and relatively widespread in
the world of software development, they originated in the phys-
ical world of building rather than the virtual world of software.
Throughout the 1960s and 1970s the architect Christopher Alexan-
der and his colleagues identified the concept of patterns for capturing



