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Preface to the Fourth Edition

When the first edition of this book appeared in 1969, rock mechanics had
only recently begun to emerge as a distinct and identifiable scientific subject.
It coalesced from several strands, including classical continuum mechanics,
engineering and structural geology, and mining engineering. The two senior
authors of Fundamentals of Rock Mechanics were perhaps uniquely qualified to
play seminal roles in bringing about this emergence. John Jaeger had by that
time already enjoyed a long and distinguished career as arguably the preeminent
applied mathematician of the English-speaking world, and was the coauthor,
with H. S. Carslaw, of one of the true classics of the scientific literature, Conduc-
tion of Heat in Solids. Neville Cook was at that time barely 30 years old, but was
already the director of research at the South African Chamber of Mines, and well
on his way to becoming acknowledged as the leading and most brilliant figure in
this new field of rock mechanics.

The earlier editions of this book played a large role in establishing an iden-
tity for the field of rock mechanics and in defining what are now accepted to
be the “fundamentals” of the field. These fundamentals consist firstly of the
classical topics of solid mechanics – stress and strain, linear elasticity, plasticity,
viscoelasticity, and elastic wave propagation. But rocks are much more complex
than are most of the traditional engineering materials for which the classical
mechanics theories were intended to apply. Hence, a book entitled Fundamen-
tals of Rock Mechanics must also treat certain topics that are either unique to
rocks, or at any rate which assume great importance for rocks, such as friction
along rough surfaces, degradation and failure under compressive loads, coupling
betweenmechanical deformation and fluid flow, the effect of cracks and pores on
mechanical deformation, and, perhaps most importantly, the effect of fractures
and joints on large-scale rock behavior.

Rock mechanics, thus defined, forms a cornerstone of several fields of science
and engineering – from structural geology and tectonophysics, to mining, civil,
and petroleum engineering. A search of citations in scientific journals shows that
previous editions of this book have found an audience that encompasses not only
these areas, but also includes material scientists and ceramicists, for example. It
is hoped that this new edition will continue to be found useful by such a variety
of researchers, students, and practitioners.

The extent to which the different chapters of this edition are new or expanded
varies considerably, but aside from the brief, introductory Chapter 1, all have
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been revised and updated to one extent or another. The discussion of the basic
theory of stress and strain in Chapter 2 has now been complemented by exten-
sive use of vector and matrix notation, although all of the major results are
also displayed in explicit component form. A discussion of rate-dependence has
been added to Chapter 3 on friction. Chapter 4 on rock deformation has been
updated, with more emphasis on true-triaxial failure criteria. Chapter 5 on lin-
ear elasticity now includes more discussion of anisotropic elasticity, as well as
coverage of important general theorems related to strain energy. A detailed dis-
cussion of issues related to measurement of the strain-softening portion of the
complete stress–strain curve has been added to Chapter 6 on laboratory mea-
surements. Chapter 7 on poroelasticity is almost entirely new, and also includes
a new section on thermoelasticity. Chapter 8 on stresses around cavities and
inclusions, which is based heavily on the chapter in the 3rd edition that was
entitled “Further Problems in Elasticity,” has been simplified by moving some
material to other more appropriate chapters, while at the same time adding
material on three-dimensional problems. The chapters of the 3rd edition on
ductile materials, granular materials, and time-dependent behavior have been
combined to form Chapter 9 on inelastic behavior. Chapter 10, on microme-
chanical models, is a greatly enlarged and updated version of the old chapter
on crack phenomena, with expanded treatment of effective medium theories.
Chapter 11 on wave propagation has been doubled in size, with new material
on reflection and refraction of waves across interfaces, the effects of pore flu-
ids, and attenuation mechanisms. The important influence of rock fractures on
the mechanical, hydraulic, and seismic behavior of rock masses is now widely
recognized, and an entirely new chapter, Chapter 12, has been devoted to this
topic. Chapter 13 on subsurface stresses collects material that had been scattered
in various places in the previous editions. The final chapter, Chapter 14, briefly
shows how the ideas and results of previous chapters can be used to shed light
on some important geological and geophysical phenomena.

In keeping with the emphasis on fundamentals, this book contains no dis-
cussion of computational methods. Methods such as boundary elements, finite
elements, and discrete elements are nowadays an indispensable tool for analyz-
ing stresses and deformations around subsurface excavations, mines, boreholes,
etc., and are also increasingly being used to study problems in structural geol-
ogy and tectonophysics. But the strength of numerical methods has, at least
until now, been in analyzing specific problems involving complex geometries
and complicated constitutive behavior. Analytical solutions, although usually
limited to simplified geometries, have the virtue of displaying the effect of the
parameters of a problem, such as the elastic moduli or crack size, in a clear and
transparent way. Consequently, many important analytical solutions are derived
and/or presented in this book.

The heterogeneous nature of rock implies that most rock properties vary
widely within a given rock type, and often within the same reservoir or quarry.
Hence, rock data are presented in this work not to provide “handbook values”
that could be used in specific applications, but mainly to illustrate trends, or to
highlight the level of agreement with various models and theories. Nevertheless,
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this new edition contains slightly more actual rock data than did the previous
edition, as measured by the number of graphs and tables that contain laboratory
or field data. The reference list contains about 15% more items than in the 3rd
edition, andmore than half of the references are new.With only a few exceptions
for some key references that originally appeared in conference proceedings or as
institutional reports or theses, the vast majority of the references are to journal
articles or monographs.

The ordering of the chapters remains substantially the same as in the 3rd
edition. The guiding principle has been tominimize, asmuch as possible – in fact,
almost entirely – the need to refer in one chapter to definitions, data or theoretical
results that are not presented until a later chapter. In particular, then, the chapters
are not structured so as to follow theworkflow that would be used in a rock engi-
neering project. For example, although knowledge of the in situ stresses would
be required at the early stages of an engineering project, the chapter on subsur-
face stresses is placed near the end, because its presentation requires reference
to analytical solutions that have been developed in several previous chapters.

The mathematical level of this edition is the same as in previous editions.
The mathematical tools used are those that would typically be learned by under-
graduates in engineering or the physical sciences. Thus, matrix methods are now
extensively used in the discussion of stress and strain, as these have become a stan-
dard part of the undergraduate curriculum. Conversely, Cartesian tensor indicial
notation, which is convenient for presenting the equations of stress, strain, and
elasticity, has not been used, as it is not widely taught at undergraduate level.
Perhaps the only exception to this rule is the use in Chapter 8 of functions of a
complex variable for solving two-dimensional elasticity problems. But the small
amount of complex variable theory that is required is presented as needed, and
the integral theorems of complex analysis are avoided.

Rock mechanics is indeed a subfield of continuum mechanics, and my con-
tribution to this book owes a heavy debt to the many excellent teachers of
continuum mechanics and applied mathematics with whom I have been for-
tunate enough to study. These include Melvin Baron, Herbert Deresiewicz,
and Morton Friedman at Columbia, and David Bogy, Michael Carroll, Werner
Goldsmith, and Paul Naghdi at Berkeley. Although this book shows little obvious
influence of Paul Naghdi’s style of continuummechanics, it was only after being
inspired by his elegant and ruthlessly rigorous approach to this subject that I
changed my academic major field to continuum mechanics, thus setting me on
a path that led me to do my PhD in rock mechanics.

Finally, I offer my sincere thanks to John Hudson of Imperial College and
Rock Engineering Consultants, and Laura Pyrak-Nolte of Purdue University for
reading a draft of this book and providing many valuable suggestions.

R. W. Zimmerman
Stockholm, May 2006

Artwork from the book is available to instructors at:
www.blackwellpublishing.com/jaeger
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To my wife, Jennifer, my partner in everything

Neville Cook,
Lafayette, Calif.

January 1998
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1 Rock as a material

1.1 Introduction Rock mechanics was defined by the Committee on Rock Mechanics of the
Geological Society of America in the following terms: “Rock mechanics is the
theoretical and applied science of the mechanical behavior of rock; it is that
branch of mechanics concerned with the response of rock to the force fields of
its physical environment” ( Judd, 1964). For practical purposes, rock mechanics
is mostly concerned with rock masses on the scale that appears in engineering
and mining work, and so it might be regarded as the study of the properties and
behavior of accessible rockmasses due to changes in stresses or other conditions.
Since these rocks may be weathered or fragmented, rock mechanics grades at
one extreme into soil mechanics. On the other hand, at depths at which the
rocks are no longer accessible to mining or drilling, it grades into the mechanical
aspects of structural geology (Pollard and Fletcher, 2005).
Historically, rock mechanics has been very much influenced by these two

subjects. For many years it was associated with soil mechanics at scientific con-
ferences, and there is a similarity between much of the two theories and many
of the problems. On the other hand, the demand from structural geologists for
knowledge of the behavior of rocks under conditions that occur deep in the
Earth’s crust has stimulated much research at high pressures and temperatures,
along with a great deal of study of the experimental deformation of both rocks
and single crystals (Paterson and Wong, 2005).
An important feature of accessible rock masses is that they are broken up

by joints and faults, and that pressurized fluid is frequently present both in
open joints and in the pores of the rock itself. It also frequently happens that,
because of the conditions controlling mining and the siting of structures in civil
engineering, several lithological types may occur in any one investigation. Thus,
from the outset, two distinct problems are always involved: (i) the study of the
orientations and properties of the joints, and (ii) the study of the properties and
fabric of the rock between the joints.
In any practical investigation in rock mechanics, the first stage is a geological

and geophysical investigation to establish the lithologies and boundaries of the
rock types involved. The second stage is to establish, by means of drilling or
investigatory excavations, the detailed pattern of jointing, and to determine the
mechanical and petrological properties of the rocks from samples. The third
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stage, in many cases, is to measure the in situ rock stresses that are present in
the unexcavated rock. With this information, it should be possible to predict the
response of the rock mass to excavation or loading.
This chapter presents a very brief introduction to the different rock types and

the manner in which rock fabric and faulting influences the rock’s engineering
properties. A more thorough discussion of this topic can be found in Goodman
(1993).

1.2 Joints and
faults

Joints are by far the most common type of geological structure. They are defined
as cracks or fractures in rock along which there has been little or no transverse
displacement (Price, 1966). They usually occur in sets that are more or less
parallel and regularly spaced. There are also usually several sets oriented in
different directions, so that the rock mass is broken up into a blocky structure.
This is a main reason for the importance of joints in rock mechanics: they divide
a rock mass into different parts, and sliding can occur along the joint surfaces.
These joints can also provide paths for fluids to flow through the rock mass.
Joints occur on all scales. Joints of the most important set, referred to as major

joints, can usually be traced for tens or hundreds of meters, and are usually more
or less planar and parallel to each other. The sets of joints that intersect major
joints, known as cross joints, are usually of less importance, and are more likely
to be curved and/or irregularly spaced. However, in some cases, the two sets
of joints are of equal importance. The spacing between joints may vary from
centimeters to decameters, although very closely spaced joints may be regarded
as a property of the rock fabric itself.
Joints may be “filled” with various minerals, such as calcite, dolomite, quartz

or clay minerals, or they may be “open,” in which case they may be filled with
fluids under pressure.
Jointing, as described above, is a phenomenon common to all rocks, sedi-

mentary and igneous. A discussion of possible mechanisms by which jointing is
produced is given by Price (1966) and Pollard and Aydin (1988). Joint systems are
affected by lithological nature of the rock, and so the spacing and orientation of
the joints may change with the change of rock type.
Another quite distinct type of jointing is columnar jointing, which is best devel-

oped in basalts and dolerites, but occasionally occurs in granites and some
metamorphic rocks (Tomkeieff, 1940; Spry, 1961). This phenomenon is of
some importance in rock mechanics, as igneous dykes and sheets are frequently
encountered in mining and engineering practice. In rocks that have columnar
jointing, the rock mass is divided into columns that are typically hexagonal, with
side lengths on the order of a few tens of centimeters. The columns are inter-
sected by cross joints that are less regular toward the interior of the body. The
primary cause of columnar jointing appears to be tensile stresses that are cre-
ated by thermal contraction during cooling. At an external surface, the columns
run normal to the surface, and Jaeger (1961) and others have suggested that in
the interior of the rock mass the columns run normal to the isotherms during
cooling. The detailed mechanism of columnar jointing has been discussed by
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Lachenbruch (1961); it has similarities to the cracks that form in soil and mud
during drying, and to some extent to cracking in permafrost.
Faults are fracture surfaces on which a relative displacement has occurred

transverse to the nominal plane of the fracture. They are usually unique struc-
tures, but a large number of them may be merged into a fault zone. They are
usually approximately planar, and so they provide important planes on which
sliding can take place. Joints and faults may have a common origin (de Sitter,
1956), and it is often observed underground that joints becomemore frequent as
a fault is approached. Faults can be regarded as the equivalent, on a geological
scale, of the laboratory shear fractures described in Chapter 4. The criteria for
fracturing developed in Chapter 4 are applied to faults in §14.2.
From the point of view of rock mechanics, the importance of joints and faults

is that they cause the existence of fairly regularly spaced, approximately plane
surfaces, which separate blocks of “intact” rock that may slide on one another. In
practice, the essential procedure is to measure the orientation of all joint planes
and similar features, either in an exploratory tunnel or in a set of boreholes, and
to plot the directions of their normal vectors on a stereological projection. Some
typical examples are shown in the following figures taken from investigations of
the Snowy Mountain Hydroelectric Authority in Australia.
Figure 1.1 is a stereographic projection plot of the normals to the fracture

planes in the Headrace Channel for the Tumut 3 Project. The thick lines show
the positions of the proposed slope cuts. In this case, 700 normal vectors were
measured.

Fig. 1.1
Stereographic plot
(lower hemisphere) of
normals to fracture
planes in Tumut 3
Headrace Channel. The
contours enclose areas
of equal density of
poles.
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Fig. 1.2 Rosette
diagram showing strikes
of joints, sheared zones,
and bedding planes at
the Murray 2 dam site.
The predominant dip
for each strike is also
shown.
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Figure 1.2 shows the important geological features at the Murray 2 dam site
on a different representation. Here, the directions of strike of various features are
plotted as a rosette, with the angles of dip of the dominant features at each strike
given numerically. The features recorded are joints, sheared zones, and bedding
planes, any or all of which may be of importance.
Finally, Fig. 1.3 gives a simplified representation of the situation at the inter-

section of three important tunnels. There are three sets of joints whose dips and
strikes are shown in Fig. 1.3.

1.3 Rock-forming
minerals

Igneous rocks consist of a completely crystalline assemblage of minerals such as
quartz, plagioclase, pyroxene, mica, etc. Sedimentary rocks consist of an assem-
blage of detrital particles and possibly pebbles from other rocks, in a matrix
of materials such as clay minerals, calcite, quartz, etc. From their nature, sed-
imentary rocks contain voids or empty spaces, some of which may form an
interconnected system of pores. Metamorphic rocks are produced by the action
of heat, stress, or heated fluids on other rocks, sedimentary or igneous.
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Fig. 1.3 Dips and
strikes of three joint
sets, (a) (b) and (c), at
the intersection of three
tunnels: I, Island Bend
intake; II,
Eucumbene-Snowy
tunnel; III,
Snowy-Geehi tunnel.
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All of these minerals are anisotropic, and the elastic moduli of the more com-
mon ones, as defined in §5.10, are known numerically. If in a polycrystalline rock
there are any preferred orientations of the crystals, this will lead to anisotropy of
the rock itself. If the orientations of the crystals are random, the rock itself will
be isotropic, and its elastic moduli may be estimated by the methods described
in §10.2.
There are a number of general statistical correlations between the elasticity

and strength of rocks and their petrography, and it is desirable to include a full
petrographic description with all measurements. Grain size also has an effect on
mechanical properties. In sedimentary rocks there are, as would be expected,
some correlations between mechanical properties and porosity (Mavko et al.,
1998).
A great amount of systematic research has been done on the mechanical

properties of single crystals, bothwith regards to their elastic properties and their
plastic deformation. Single crystals show preferred planes for slip and twinning,
and these have been studied in great detail; for example, calcite (Turner et al.,
1954) and dolomite (Handin and Fairbairn, 1955). Such measurements are an
essential preliminary to the understanding of the fabric of deformed rocks, but
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they have little relevance to the macroscopic behavior of large polycrystalline
specimens.

1.4 The fabric of
rocks

The study of the fabric of rocks, the subject of petrofabrics, is described in many
books (Turner and Weiss, 1963). All rocks have a fabric of some sort. Sed-
imentary rocks have a primary depositional fabric, of which the bedding is
the most obvious element, but other elements may be produced by currents
in the water. Superimposed on this primary fabric, and possibly obscuring it,
may be fabrics determined by subsequent deformation, metamorphism, and
recrystallization.
The study of petrofabrics comprises the study of all fabric elements, both

microscopic and macroscopic, on all scales. From the present point of view, the
study of the larger elements, faults and relatively widely spaced joints, is an
essential part of rock mechanics. Microscopic elements and very closely spaced
features such as cleats in coal, are regarded as determining the fabric of the
rock elements between the joints. These produce an anisotropy in the elastic
properties and strength of the rock elements. In principle, this anisotropy can
be measured completely by mechanical experiments on rock samples, but petro-
fabric measurements can provide much useful information, in particular about
preferred directions. Petrofabric measurements are also less time-consuming to
make, and so are amenable to statistical analysis. Studies of rock fabric are there-
fore bettermade by a combination ofmechanical and petrofabricmeasurements,
but the latter cannot be used as a substitute for the former. Combination of the
two methods has led to the use of what may be regarded as standard anisotropic
rocks. For example, Yule marble, for which the calcite is known (Turner, 1949)
to have a strong preferred orientation, has been used in a great many studies of
rock deformation (Turner et al., 1956; Handin et al., 1960).
A second application of petrofabric measurements in rock mechanics arises

from the fact that some easily measured fabric elements, such as twin lamellae in
calcite and dolomite, quartz deformation lamellae, kink bands, and translation
or twin gliding in some crystals, may be used to infer the directions of the
principal stresses under which they were generated. These directions, of course,
may not necessarily be the same as those presently existing, and so they form
an interesting complement to underground stress measurements. Again, such
measurements are relatively easy tomake and to study statistically. The complete
fabric study of joints and fractures on all scales is frequently used both to indicate
the directions of the principal stresses and the large-scale fabric of the rock mass
as a whole (Gresseth, 1964).
A great deal of experimental work has been concentrated on the study of the

fabrics produced in rocks in the laboratory under conditions of high temperature
and pressure. In some cases, rocks of known fabric are subjected to prescribed
laboratory conditions, and the changes in the fabric are studied; for example,
Turner et al. (1956) on Yule marble, and Friedman (1963) on sandstone.
Alternatively, specific attempts to produce certain types of fabrics have been

made. Some examples are the work of Carter et al. (1964) on the deformation
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of quartz, Paterson and Weiss (1966) on kink bands, and Means and Paterson
(1966) on the production of minerals with a preferred orientation.
Useful reviews of the application of petrofabrics to rock mechanics and

engineering geology have been given by Friedman (1964) and Knopf (1957).

1.5 The
mechanical nature
of rock

The mechanical structure of rock presents several different appearances,
depending upon the scale and the detail with which it is studied.
Most rocks comprise an aggregate of crystals and amorphous particles joined

by varying amounts of cementing materials. The chemical composition of the
crystals may be relatively homogeneous, as in some limestones, or very hetero-
geneous, as in a granite. Likewise, the size of the crystals may be uniform or
variable, but they generally have dimensions of the order of centimeters or small
fractions thereof. These crystals generally represent the smallest scale at which
themechanical properties are studied. On the one hand, the boundaries between
crystals represent weaknesses in the structure of the rock, which can otherwise
be regarded as continuous. On the other hand, the deformation of the crystals
themselves provides interesting evidence concerning the deformation to which
the rock has been subjected.
On a scale with dimensions ranging from a fewmeters to hundreds of meters,

the structure of some rocks is continuous, but more often it is interrupted by
cracks, joints, and bedding planes that separate different strata. It is this scale and
these continuities which are of most concern in engineering, where structures
founded upon or built within rock have similar dimensions.
The overall mechanical properties of rock depend upon each of its structural

features. However, individual features have varying degrees of importance in
different circumstances.
At some stage, it becomes necessary to attach numerical values to themechan-

ical properties of rock. These values are most readily obtained from laboratory
measurements on rock specimens. These specimens usually have dimensions of
centimeters, and contain a sufficient number of structural particles for them to be
regarded as grossly homogeneous. Thus, although the properties of the individ-
ual particles in such a specimen may differ widely from one particle to another,
and although the individual crystals themselves are often anisotropic, the crys-
tals and the grain boundaries between them interact in a sufficiently random
manner so as to imbue the specimen with average homogeneous properties.
These average properties are not necessarily isotropic, because the processes
of rock formation or alteration often align the structural particles so that their
interaction is randomwith respect to size, composition and distribution, but not
with respect to their anisotropy. Nevertheless, specimens of such rock have gross
anisotropic properties that can be regarded as being homogeneous.
On a larger scale, the presence of cracks, joints, bedding and minor faulting

raises an important question concerning the continuity of a rock mass. These
disturbances may interrupt the continuity of the displacements in a rock mass
if they are subjected to tension, fluid pressure, or shear stress that exceeds their
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frictional resistance to sliding. Where such disturbances are small in relation to
the dimensions of a structure in a rock, their effect is to alter the mechanical
properties of the rock mass, but this mass may in some cases still be treated as
a continuum. Where these disturbances have significant dimensions, they must
be treated as part of the structure or as a boundary.
The loads applied to a rock mass are generally due to gravity, and compressive

stresses are encountered more often than not. Under these circumstances, the
most important factor in connection with the properties and continuity of a rock
mass is the friction between surfaces of cracks and joints of all sizes in the rock.
If conditions are such that sliding is not possible on any surfaces, the systemmay
be treated to a good approximation as a continuum of rock, with the properties
of the average test specimen. If sliding is possible on any surface, the system
must be treated as a system of discrete elements separated by these surfaces,
with frictional boundary conditions over them.
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2 Analysis of stress and strain

2.1 Introduction In the study of the mechanics of particles, the fundamental kinematical variable
that is used is the position of the body, and its two time derivatives, the velocity and
the acceleration. The interaction of a given body with other bodies is quantified
in terms of the forces that these other bodies exert on the first body. The effect
that these forces have on the body is governed by Newton’s law of motion, which
states that the sum of the forces acting on a body is equal to the mass of the body
times its acceleration. The condition for a body to be in equilibrium is that the
sum of the external forces and moments acting on it must vanish.

These basic mechanical concepts such as position and force, as well as
Newton’s law of motion, also apply to extended, deformable bodies such as
rock masses. However, these concepts must be altered somewhat, for various
reasons. First, the fact that the force applied to a rock will, in general, vary from
point to point, and will be distributed over the body must be taken into account.
The idealization that forces act at localized points, which is typically used in
the mechanics of particles, is not sufficiently general to apply to all problems
encountered in rock mechanics. Hence, it is necessary to introduce the concept
of traction, which is a force per unit area. As the traction generally varies with the
orientation of the surface on which it acts, it is most conveniently represented
with the aid of an entity known as the stress tensor.

Another fundamental difference between the mechanics of particles and
deformable bodies such as rocks is that different parts of the rock may undergo
different amounts of displacement. In general, it is the relative displacement
of neighboring particles, rather than the absolute displacement of a particular
particle, that can be equating in some way to the applied tractions. This can
be seen from the fact that a rock sample can be moved as a rigid body from one
location to another, after which the external forces acting on the rock can remain
unaltered. Clearly, therefore, the displacement itself cannot be directly related to
the applied loads. This relative displacement of nearby elements of the rock is
quantified by an entity known as the strain.

The stress tensor is a symmetric second-order tensor, and many important
properties of stress follow directly from those of second-order tensors. In the
event that the relative displacements of all parts of the rock are small, the strain
can also be represented by a second-order tensor called the infinitesimal strain
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tensor. A consequence of this fact is that much of the general theory of stresses
applies also to the analysis of strains. The general theory of stress and strain
is the topic of this chapter. Both of these theories can be developed without
any reference to the specific properties of the material under consideration (i.e.,
the constitutive relationship between the stress and strain tensors). Hence, the
discussion given in this chapter parallels, to a great extent, that which is given in
many texts on elasticity, or solid mechanics in general. Among the many classic
texts on elasticity that include detailed discussion of the material presented in
this chapter are Love (1927), Sokolnikoff (1956), Filonenko-Borodich (1965), and
Timoshenko and Goodier (1970). The chapter ends with a brief introduction to
the theory of finite strains.

2.2 Definition of
traction and stress

Consider a rock mass that is subject to some arbitrary set of loads. At any given
point within this rock, we can imagine a plane slicing through the rock at some
angle. Such a plane may in fact form an external boundary of the rock mass, or
may represent a fictitious plane that is entirely internal to the rock. Figure 2.1a
shows such a plane, along with a fixed (x, y) coordinate system. In particular,
consider an element of that plane that has area A. Most aspects of the theory
of stress (and strain) can be developed within a two-dimensional context, and
extensions to three dimensions are in most cases straightforward. As most figures
are easier to draw, and to interpret, in two dimensions than in three, much of
the following discussion will be given first in two-dimensional form.

The plane shown in Fig. 2.1a can be uniquely identified by the unit vector
that is perpendicular to its surface. The vector n = (nx , ny) is the outward unit
normal vector to this plane: it has unit length, is normal to the plane, and points
in the direction away from the rock mass. The components of this vector n are
the direction cosines that the outward unit normal vector makes with the two
coordinate axes. For example, a plane that is perpendicular to the x-axis would
have n = (1, 0). As the length of any unit normal vector is unity, the Pythagorean
theorem implies that (nx)2+(ny)2 = 1. The unit normal vectors in the directions
of the coordinate axes are often denoted by ex = (1, 0) and ey = (0, 1). The
identification of a plane by its outward unit normal vector is employed frequently

Fig. 2.1 Normal
vector n and traction
vector p acting on a
surface. (a)
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in rock mechanics. It is important to remember that the vector n is perpendicular
to the plane in question; it does not lie within that plane.

The action that the rock adjacent to the plane exerts on the rock that is
“interior” to the plane can be represented by a resultant force F, which, like all
forces, is a vector. The traction vector p is defined as the ratio of the resultant
force F to the surface area A:

p(averaged over the area) = 1
A

F. (2.1)

In order to define the traction that acts over a specific “point” in the rock, the area
is now allowed to shrink down to a point, so that the magnitude A goes to zero.
Following the convention often used in applied mathematics, the smallness of
the area is indicated by the notation “dA,” where the “d” denotes “differential,”
and likewise for the resultant force F. As the area shrinks down to a point, the
traction at that point can then be defined by (Fig. 2.1b)

p(x; n) = lim
dA→0

1
dA

dF. (2.2)

The notation p(x; n) denotes the traction vector at the point x ≡ (x, y, z), on a
plane whose outward unit normal vector is n. In the following discussion, when
the point x under consideration is either clear from the context, or immaterial
to the particular discussion, the dependence of p on x will be suppressed in the
notation.

At this point, it is necessary to introduce a sign convention that is inconsistent
with the one used in most areas of mechanics, but which is nearly universal in
the study of rocks and soils. The Cartesian component of the traction p in any
given direction r is considered to be a positive number if the inner product (dot
product) of p and a unit vector in the r direction is negative. One way to interpret
this convention is that the traction is based on −F, rather than F. The reason for
utilizing this particular sign convention will become clear after the stresses are
introduced.

It is apparent from the definition given in (2.2) that the traction is a vector,
and therefore has two components in a two-dimensional system, and three
components in a three-dimensional system. In general, this vector may vary from
point to point, and is therefore a function of the location of the point in question.
However, at any given point, the traction will also, in general, be different on
different planes that pass through that point. In other words, the traction will also
be a function of n, the outward unit normal vector. The fact that p is a function
of two vectors, the position vector x and the outward unit normal vector n,
is awkward. This difficulty is eliminated by appealing to the concept of stress,
which was introduced in 1823 by the French civil engineer and mathematician
Cauchy. The stress concept allows all possible traction vectors at a point to be
represented by a single mathematical entity that does not explicitly depend on
the unit normal of any particular plane. The price paid for this simplification, so
to speak, is that the stress is not a vector, but rather a second-order tensor, which
is a somewhat more complicated, and less familiar, mathematical object than is
a vector.
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Although there are an infinite number of different traction vectors at a point,
corresponding to the infinity of possible planes passing through that point, all
possible traction vectors can be found from knowledge of the traction vector on
two mutually orthogonal planes (or three mutually orthogonal planes in three
dimensions). To derive the relationship for the traction on an arbitrary plane, it is
instructive to follow the arguments originally put forward by Cauchy. Consider
a thin penny-shaped slab of rock having thickness h, and radius r (Fig. 2.2a). The
outward unit normal vector on the right face of this slab is denoted by n; the
outward unit normal vector of the left face of the slab is therefore −n. The total
force acting on the face with outward unit normal vector n is equal to π r2p(n),
whereas the total force acting on the opposing face is π r2p(−n). The total force
acting on the outer rim of this penny-shaped slab will be given by an integral
of the traction over the outer area, and will be proportional to 2π rh, which is
the surface area of the outer rim. Performing a force balance on this slab of rock
yields

π r2p(n)+ π r2p(−n)+ 2π rht = 0, (2.3)

where t is the mean traction over the outer rim. If the thickness h of this slab is
allowed to vanish, this third term will become negligible, and the condition for
equilibrium becomes

p(−n) = −p(n). (2.4)

Equation (2.4), known as Cauchy’s first law, essentially embodies a version of
Newton’s third law: if the material to the left of a given plane exerts a traction p
on the material on the right, then the material on the right will exert a traction
−p on the material to the left.

Now, consider a triangular slab of rock, as in Fig. 2.2b, with a uniform thickness
w in the third (z) direction. Two faces of this slab have outward unit normal
vectors that coincide with the negative x and y coordinate directions, respectively,
whereas the third face has an outward unit normal vector of n = (nx , ny). The
length of the face with outward unit normal vector n is taken to be h. The length
of the face that has outward unit normal vector n = −ex = (−1, 0) is equal

Fig. 2.2 (a) Thin slab
used in derivation of
Cauchy’s first law;
(b) triangular slab used
in derivation of
Cauchy’s second law.
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to hnx , and so its area is hwnx . The traction vector on this face is denoted by
p = (−ex), and so the total force acting on this face is hwnxp(−ex). Similar
considerations show that the total force acting on the face with outward unit
normal vector −ey will be hwnyp(−ey). Hence, a force balance on this slab
leads to

hwnxp(−ex)+ hwnyp(−ey)+ hwp(n) = 0. (2.5)

Canceling out the common terms, and utilizing Cauchy’s first law, (2.4), leads to
Cauchy’s second law:

p(n) = nxp(ex)+ nyp(ey). (2.6)

This result would remain unchanged if we consider the more general case in
which a distributed body force acts on the tetrahedral-shaped element as in
Fig. 2.2b. Whereas surface forces act over the outer surface of an element of
rock, body forces act over the entire volume of the rock. The most obvious and
common body force encountered in rock mechanics is that due to gravity, which
has a magnitude of ρg (per unit volume), and is directed in the downward vertical
direction. However, as will be shown in Chapter 7, gradients in temperature and
pore fluid pressure also give rise to phenomena which have the same effect as
distributed body forces. If there were a body-force density b per unit volume of
rock, a total body force of (1/2)h2wnxnyb would have to be added to the force
balance in (2.5). If we divide through by h, and then let the size of the element
shrink to zero (i.e., h → 0), the body force term would drop out and b would
not appear in the final result (2.6).

It is now convenient to recall that each traction is a vector, and therefore
(in two dimensions) will have two components, one in each of the coordinate
directions. The components of a traction vector such as p(ex) are denoted using
two indices – the first to indicate the direction of the outward unit normal vector
and the second to indicate the component of the traction vector:

p(ex) =
[
τxx

τxy

]
= [τxx τxy]T, (2.7)

where we adhere to the algebraic convention that a vector is written as a column,
and is therefore equivalent to the transpose of a row vector. Equation (2.6) can
therefore be written in matrix form as

p(n) = nx

[
τxx

τxy

]
+ ny

[
τyx

τyy

]
=

[
τxx τyx

τxy τyy

][
nx
ny

]
. (2.8)

In the first expression on the right in (2.8), nx and ny are treated as scalars that
multiply the two traction vectors; in the second expression, the formalism of
matrix multiplication is used. As the two components of the vector p(n) are
px(n) and py(n), (2.8) can be written in component form as

px(n) = τxxnx + τyxny, (2.9)

py(n) = τxynx + τyyny. (2.10)
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If we use the standard matrix algebra convention that the first subscript of
a matrix component denotes the row, and the second subscript denotes the
column, the matrix appearing in (2.8) is seen to actually be the transpose of the
stress matrix, in which case we can rewrite (2.8) as

p(n) =
[
τxx τxy
τyx τyy

]T [
nx
ny

]
, (2.11)

where the matrix that appears in (2.11), without the transpose operator, is the
stress matrix, τ. Equation (2.11) can be written in direct matrix notation as

p = τTn, (2.12)

where n is a unit normal vector, p is the traction vector on the plane whose
outward unit normal vector is n, and τ is the stress matrix, or stress tensor. In
two dimensions the stress tensor has four components; in three dimensions it
has nine. Equation (2.12) gives the traction on an arbitrarily oriented plane in
terms of the stress matrix, relative to some fixed orthogonal coordinate system,
and the direction cosines between the outward unit normal vector to the plane
and the two coordinate axes. Note that a tensor can be written as a matrix,
which is merely a rectangular array of numbers. However, a tensor has specific
mathematical properties that are not necessarily shared by an arbitrary matrix-
like collection of numbers. These properties relate to the manner in which the
components of a tensor transform when the coordinate system is changed; these
transformation laws are discussed in more detail in §2.3. The rows of the matrix
that represents τ are the traction vectors along faces whose outward unit normal
vectors lie along the coordinate axes. In other words, the first row of τ is p(ex),
the second row is p(ey), etc.

The physical significance of the stress tensor is traditionally illustrated by
the schematic diagram shown in Fig. 2.3a. Consider a two-dimensional square
element of rock, whose faces are each perpendicular to one of the two coordinate
axes. The traction vector that acts on the face whose outward unit normal vector
is in the x direction has components (τxx , τxy). Each of these two components
can be considered as a vector in its own right; they are indicated in Fig. 2.3a as
arrows whose lines of action pass through the center of the face whose outward
unit normal vector is ex. As the traction components are considered positive if
they are oriented in the directions opposite to the outward unit normal vector,
we see that the traction τxx is a positive number if it is compressive. Compressive
stresses are much more common in rock mechanics than are tensile stresses. For
example, the stresses in a rock mass that are due to the weight of the overlying
rock are compressive. In most other areas of mechanics, tensile stresses are
considered positive, and compressive stresses are reckoned to be negative. The
opposite sign convention is traditionally used in rock (and soil) mechanics in
order to avoid the frequent occurrence of negative signs in calculations involving
stresses.

Many different notations have been used to denote the components of the
stress tensor. We will mainly adhere to the notation introduced above, which has
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Fig. 2.3 (a) Stress
components acting on a
small square element.
(b) Balance of angular
momentum on this
element shows that the
stress tensor must be
symmetric.
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been used, for example, by Sokolnikoff (1956). Some authors use σ instead of τ
as the basic symbol, but utilize the same subscripting convention. Many rock and
soil mechanics treatments, including earlier editions of this book, denote shear
stresses by τxy, etc., but denote normal stresses by, for example, σx rather than
τxx . This notation, which has also been used by Timoshenko and Goodier (1970),
has the advantage of clearly indicating the distinction between normal and shear
components of the stress, which have very different physical effects, particularly
when acting on fracture planes or other planes of weakness (Chapter 3). How-
ever, the {σ , τ } notation does not reflect the fact that the normal and shear
components of the stress are both components of a single mathematical object
known as the stress tensor. Furthermore, many of the equations in rock mechan-
ics take on a simpler and more symmetric form if written in terms of a notation
in which all stress components are written using the same symbol. However, a
version of the Timoshenko and Goodier notation will occasionally be used in
this book when discussing the traction acting on a specific plane. In such cases,
for reasons of simplicity (so as to avoid the need for subscripts), it will be conve-
nient to denote the normal stress by σ , and the shear stress by τ . Many classic
texts on elasticity, such as Love (1927) and Filonenko-Borodich (1965), utilize the
notation introduced by Kirchhoff in which τxy is denoted by Xy, etc. Green and
Zerna (1954) use the notation suggested by Todhunter and Pearson (1886), in
which τxy is denoted by 
xy, etc.

Equation (2.12) is usually written without the transpose sign, although strictly
speaking the transpose is needed. The reason that it is allowable to write p = τn
in place of p = τTn is that the stress matrix is in fact always symmetric, so
that τxy = τyx , in which case τ = τT. This property of the stress tensor is
of great importance, if for no other reason than that it reduces the number
of stress components that must be measured or calculated from four to three
in two dimensions, and from nine to six in three dimensions. The symmetry
of the stress tensor can be proven by appealing to the law of conservation of
angular momentum. For simplicity, consider a rock subject to a state of stress
that does not vary from point to point. If we draw a free-body diagram for a small
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rectangular element of rock, centered at point (x, y), the traction components
acting on the four faces are shown in Fig. 2.3b. The length of the element is�x
in the x direction,�y in the y direction, and�z in the z direction (into the page).
In order for this element of rock to be in equilibrium, the sum of all the moments
about any point, such as (x, y), must be zero. Consider first the tractions that act
on the right face of the element. The force vector represented by this traction is
found by multiplying the traction by the area of that face, which is �y�z. The
x-component of this force is therefore τxx�y�z. However, the resultant of this
force acts through the point (x, y), and therefore contributes no moment about
that point. The y-component of this traction is τxy, and the net force associated
with it is τxy�y�z. The moment arm of this force is �x/2, so that the total
clockwise moment about the z-axis, through the point (x, y), is τxy�x�y�z/2.
Adding up the four moments that are contributed by the four shear stresses yields

τxy�x�y�z/2 + τxy�y�x�z/2 − τyx�x�y�z/2 − τyx�y�x�z/2 = 0.

(2.13)

Canceling out the terms�x�y�z/2 leads to the result

τxy = τyx . (2.14)

In three dimensions, a similar analysis leads to the relations τxz = τzx and
τyz = τzy. This result should be interpreted as stating that at any specific point
(x, y, z), the stress component τxy(x, y, z) is equal in magnitude and sign to the
stress component τyx(x, y, z). There is in general no reason for the conjugate
shear stresses at different points to be equal to each other.

Although the derivation presented above assumes that the stresses do not vary
from point to point, and that the element of rock is in static equilibrium, the
result is actually completely general. The reason for this is related to the fact that
the result applies at each infinitesimal “point” in the rock. If we had accounted
for the variations of the stress components with position, these terms would
contribute moments that are of higher order in �x and �y. Dividing through
the moment balance equation by�x�y�z, and then taking the limit as�x and
�y go to zero, would cause these additional terms to drop out, leading to (2.14).
The same would occur if we considered the more general situation in which the
element were not in static equilibrium, but rather was rotating. In this situation,
the sum of the moments would be equal to the moment of inertia of the element
about the z-axis through the point (x, y), which isρ�x�y�z[(�x)2+(�y)2]/12,
where ρ is the density of the rock, multiplied by the angular acceleration, ω̇.
Hence, the generalization of (2.14) would be

τxy�x�y�z − τyx�x�y�z = ρ�x�y�z[(�x)2 + (�y)2]ω̇/12. (2.15)

Dividing through by�x�y�z, and then taking the limit as the element shrinks
down to the point (x, y), leads again to (2.14).

The symmetry of the stress tensor is therefore a general result. However, it is
worth bearing in mind that although τxy and τyx are numerically equal, they are in
fact physically distinct stress components, and act on different faces of an element
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of rock. Although the identification of τxy with τyx is eventually made when
solving the elasticity equations, it is usually preferable to maintain a distinction
between τxy and τyx when writing out equations, or drawing schematic diagrams
such as Fig. 2.3a. This helps to preserve as much symmetry as possible in the
structure of the equations.

The symmetry of the stress tensor followed from the principle of conservation
of angular momentum. The principle of conservation of linearmomentum leads
to three further equations that must be satisfied by the stresses. These equations,
which are known as the equations of stress equilibrium and are derived in §5.5,
control the rate at which the stresses vary in space. However, much useful
information about the stress tensor can be derived prior to considering the
implications of the equations of stress equilibrium. Of particular importance
are the laws that govern the manner in which the stress components vary as
the coordinate system is rotated. These laws are derived and discussed in §2.3
and §2.5.

2.3 Analysis of
stress in two
dimensions

Discussions of stress are algebraically simpler in two dimensions than in three.
In most instances, no generality is lost by considering the two-dimensional
case, as the extension to three dimensions is usually straightforward. Further-
more, many problems in rock mechanics are essentially two dimensional, in
the sense that the stresses do not vary along one Cartesian coordinate. The
most common examples of such problems are stresses around boreholes, or
around long tunnels. Many other problems are idealized as being two dimen-
sional so as to take advantage of the relative ease of solving two-dimensional
elasticity problems as compared to three-dimensional problems. Hence, it is
worthwhile to study the properties of two-dimensional stress tensors. Various
properties of two-dimensional stress tensors will be examined in this section;
their three-dimensional analogues will be discussed in §2.5.

In order to derive the laws that govern the transformation of stress com-
ponents under a rotation of the coordinate system, we again consider a small
triangular element of rock, as in Fig. 2.4. The outward unit normal vector to

Fig. 2.4 Small
triangular slab of rock
used to derive the stress
transformation
equations.
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the slanted face of the element is n = (nx , ny). We can construct another unit
vector t, perpendicular to n, which lies along this face. Being of unit length,
the components of t must satisfy the condition t · t = (tx)2 + (ty)2 = 1. The
orthogonality of t and n implies that t · n = txnx + tyny = 0, which shows that
t = ±(ny, −nx). Finally, if we require that the pair of vectors {n, t} have the
same orientation relative to each other as do the pair {ex, ey}, the minus sign
must be used, in which case t = (−ny, nx). This pair of vectors can be thought of
as forming a new Cartesian coordinate system that is rotated from the original
(x, y) system by a counterclockwise angle of θ = arcos(nx). According to (2.9)
and (2.10), the components of the traction vector p(n), expressed in terms of the
(x, y) coordinate system, are given by

px = τxxnx + τyxny, (2.16)

py = τxynx + τyyny. (2.17)

In order to find the components of p relative to the {n, t} coordinate system, we
take the inner products of p with respect to n and t, in turn. For example,

pn = p · n = pxnx + pyny = τxxn2
x + τyxnynx + τxynxny + τyyn2

y . (2.18)

Utilization of the symmetry property τyx = τyx allows this to be written as

pn = τxxn2
x + 2τxynxny + τyyn2

y . (2.19)

Similarly, the tangential component of the traction vector on this face, which is
given by pt = p · t, can be expressed as

pt = (τyy − τxx)nxny + τxy(n2
x − n2

y). (2.20)

The two unit vectors {n, t} can be thought of as defining a new coordinate
system that is rotated by a counterclockwise angle θ from the old coordinate sys-
tem. This interpretation is facilitated by denoting these two new unit vectors by
{ex′ , ey′ }. Equations (2.19) and (2.20) are therefore seen to give the components
of the traction vector on the plane whose outward unit vector is ex′ , that is,

px′(ex′) ≡ τx′x′ = τxxn2
x + 2τxynxny + τyyn2

y , (2.21)

py′(ex′) ≡ τx′y′ = (τyy − τxx)nxny + τxy(n2
x − n2

y), (2.22)

where, for clarity, we reemphasize that these components pertain to the traction
on the plane with outward unit normal vector ex′ . According to the discussion
given in §2.2, these components can also be interpreted as the components of the
stress tensor in the (x′, y′) coordinate system. Specifically, px′(ex′) = τx′x′ , and
py′(ex′) = τx′y′ . The traction vector on the plane whose outward unit normal
vector is ey′ can be found by a similar analysis; the results are

py′(ey′) ≡ τy′y′ = τxxn2
y − 2τxynxny + τyyn2

x , (2.23)

px′(ey′) ≡ τy′x′ = (τyy − τxx)nxny + τxy(n2
x − n2

y). (2.24)
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Note that px′(ey′) = τy′x′ = py′(ex′) = τx′y′ , as must necessarily be the case,
due to the general property of symmetry of the stress tensor.

Another common notation used for the stress transformation equations in
two dimensions can be obtained by recalling that the primed coordinate system
is derived from the unprimed system by rotation through a counterclockwise
angle of θ = arccos(nx). Furthermore, the components (nx , ny) of the unit
normal vector n can be written as (cos θ , sin θ ). In terms of the angle of rotation,
the stresses in the rotated coordinate system are

τx′x′ = τxx cos2 θ + 2τxy sin θ cos θ + τyy sin2 θ , (2.25)

τy′y′ = τxx sin2 θ − 2τxy sin θ cos θ + τyy cos2 θ , (2.26)

τx′y′ = (τyy − τxx) sin θ cos θ + τxy(cos2 θ − sin2 θ). (2.27)

This rotation operation can be represented by the rotation matrix L, which has
the defining properties that LTex = ex′ , and LTey = ey′ . In component form,
relative to the (x, y) coordinate system, the two primed unit vectors are given by
ex′ = (cos θ , sin θ) and ey′ = (− sin θ , cos θ). These two vectors therefore form
the two columns of the matrix LT (Lang, 1971, p. 120), which is to say they form
the rows of L, that is,

L =
[

cos θ sin θ
− sin θ cos θ

]
. (2.28)

Using this rotation matrix, the transformation equations (2.25)–(2.27) can be
written in the following matrix form:

[
τx′x′ τx′y′
τy′x′ τy′y′

]
=

[
cos θ sin θ

− sin θ cos θ

] [
τxx τxy
τyx τyy

] [
cos θ − sin θ
sin θ cos θ

]
, (2.29)

which can also be expressed in direct matrix notation as

τ′ = LτLT. (2.30)

The fact that the stresses transform according to (2.30) when the coordinate
system is rotated is the defining property that makes the stress a second-order
tensor. We note also that, using this direct matrix notation, the traction vector
transforms according to p′ = Lp. The appearance of one rotation matrix in this
transformation law is the reason that vectors are referred to as first-order tensors.

The form of the stress transformation law given in (2.29) or (2.30) is convenient
when considering a rotation of the coordinate system. However, from a more
physically based viewpoint, it is pertinent to focus attention on the tractions that
act on a given plane, such as the one shown in Fig. 2.4. The same equations
are used in both situations, but their interpretation is slightly different. When
focusing on a specific plane with unit normal vector n, it is convenient to simplify
the equations by utilizing the trigonometric identities cos2 θ − sin2 θ = cos 2θ ,
and 2 sin θ cos θ = sin 2θ . As long as attention is focused on a given plane, no
confusion should arise if the normal stress acting on this plane is denoted by
σ , and the shear stress is denoted by τ . After some algebraic manipulation, we
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arrive at the following equations for the normal and shear stresses acting on a
plane whose outward unit normal vector is rotated counterclockwise from the
x direction by an angle θ :

σ = 1
2
(τxx + τyy)+ 1

2
(τxx − τyy) cos 2θ + τxy sin 2θ , (2.31)

τ = 1
2
(τyy − τxx) sin 2θ + τxy cos 2θ . (2.32)

The variation of σ and τ with the angle of rotation is illustrated in Fig. 2.5, for
the case where {τxx = 4, τyy = 2, τxy = 1}.

An interesting question to pose is whether or not there are planes on which
the shear stress vanishes, and where the stress therefore has purely a normal
component. The answer follows directly from setting τ = 0 in (2.32), and
solving for

tan 2θ = 2τxy
τxx − τyy

. (2.33)

If τxy = 0, then the plane with n = ex is already a shear-free plane, and (2.33)
gives the result θ = 0. In general, however, whatever the values of {τxy, τxy, τyy},
there will always be two roots of (2.33) in the range 0 ≤ 2θ < 2π , and these roots
will differ by π . Hence, there will be two values of θ that satisfy (2.33), differing
by π/2, and lying in the range 0 ≤ θ < π ; this situation will be discussed in
more detail below. For now, note that if θ is defined by (2.33), it follows from
elementary trigonometry that

sin 2θ = ±[1 + cos2 2θ ]−1/2 = ±τxy[τ 2
xy + 1

4
(τxx − τyy)

2]−1/2, (2.34)

cos 2θ = ±[1 + tan2 2θ ]−1/2 = ±1
2
(τxx − τyy)[τ 2

xy + 1
4
(τxx − τyy)

2]−1/2,

(2.35)

in which case the normal stress is found from (2.31) to be given by

σ = 1
2
(τxx − τyy)± [τ 2

xy + 1
4
(τxx − τyy)

2]−1/2. (2.36)

Fig. 2.5 Variation of
normal and shear
tractions with the angle
θ (see Fig. 2.4a).
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Equation (2.36) defines two normal stresses, σ1 and σ2, that are known as
the principal normal stresses, or simply the principal stresses. These stresses act
on planes whose orientations relative to the (x, y) coordinate system are given
by (2.33). It is customary to set σ1 ≥ σ2, in which case the + sign in (2.36) is
associated with σ1, that is,

σ1 = 1
2
(τxx + τyy)+ [τ 2

xy + 1
4
(τxx − τyy)

2]1/2, (2.37)

σ2 = 1
2
(τxx + τyy)− [τ 2

xy + 1
4
(τxx − τyy)

2]1/2. (2.38)

These two principal normal stresses not only have the distinction of acting
on planes on which there is no shear, but are also the minimum and maximum
normal stresses that act on any planes through the point in question. This can be
proven by noting that

dσ
dθ

= −(τxx − τyy) sin 2θ + 2τxy cos 2θ = −2τ , (2.39)

so that any plane on which τ vanishes is also a plane on which σ takes on a locally
extreme value. This is apparent from Fig. 2.5, which also shows, for example,
that the shear traction τ will take on its maximum and minimum values on two
orthogonal planes whose normal vectors bisect the two directions of principal
normal stress.

Although it is clear from (2.37) and (2.38) which of the two principal stresses is
largest, the direction in which the major principal stress acts is not so clear, due
to the fact that (2.33) has two physically distinct solutions, that differ by π/2. The
correct choice for σ1 is the angle that makes the normal stress a local maximum,
rather than a local minimum. To determine the correct value we examine the
second derivatives of σ with respect to θ . From (2.39),

d2σ

dθ2 = −2(τxx − τyy) cos 2θ − 4τxy sin 2θ . (2.40)

Using (2.40), along with (2.33), eventually leads to the following results (Chou
and Pagano, 1992, p. 10):

τxx > τyy and τxy > 0 ⇒ 0 < θ1 < 45◦, (2.41)

τxx < τyy and τxy > 0 ⇒ 45◦ < θ1 < 90◦, (2.42)

τxx < τyy and τxy < 0 ⇒ 90◦ < θ1 < 135◦, (2.43)

τxx > τyy and τxy < 0 ⇒ 135◦ < θ1 < 180◦. (2.44)

The principal stresses and principal directions can also be found by a different
method, which can more readily be generalized to three dimensions. We start
again by asking whether or not there are planes on which the traction vector is
purely normal, with no shear component. On such planes, the traction vector
will be parallel to the outward unit normal vector, and can therefore be expressed
as p = σn, where σ is some (as yet unknown) scalar. From (2.27) it is known
that p = τTn, which, due to the symmetry of the stress tensor, can be written
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as p = τn. Hence, any plane on which the traction is purely normal must satisfy
the equation

τn = σn. (2.45)

The left-hand side of (2.45) represents a matrix, τ, multiplying a vector, n,
whereas on the right-hand side the vector n is multiplied by a scalar, σ . If the
2 × 2 identity matrix is denoted by I, then n = In, and (2.45) can be rewritten as

(τ − σ I)n = 0. (2.46)

Equation (2.46) can be recognized as a standard eigenvalue problem, in which
σ is the eigenvalue, and n is the eigenvector. Much of the theory of stress fol-
lows immediately from the theory pertaining to eigenvectors and eigenvalues
of a symmetric matrix. The main conclusions of this theory in an arbitrary
number of dimensions N are (Lang, 1971) that there will always be N mutually
orthogonal eigenvectors, each corresponding to a real eigenvalue σ , although
the eigenvalues need not necessarily be distinct from each other. In the present
case, the eigenvalues are the principal stresses, and the associated eigenvectors
are the principal stress directions. These results, along with explicit expressions
for the principal stresses and principal stress directions, can be derived from (2.46)
without appealing to the general theory, however, as follows.

Equation (2.46) can be written in component form as

(τxx − σ)nx + τxyny = 0, (2.47)

τyxnx + (τyy − σ)ny = 0. (2.48)

Using the standard procedure of Gaussian elimination, we multiply (2.47) by τyx ,
and multiply (2.48) by (τxx − σ ), to arrive at

(τxx − σ)τyxnx + τxyτyxny = 0, (2.49)

(τxx − σ)τyxnx + (τyy − σ)(τxx − σ)ny = 0. (2.50)

Subtraction of (2.49) from (2.50) yields

[σ 2 − (τxx + τyy)σ + (τxxτyy − τ 2
xy)]ny = 0, (2.51)

where use has been made of the relationship τyx = τxy. This equation will be
satisfied if either the bracketed term vanishes, or if ny = 0. In this latter case,
we must have nx = 1, since n is a unit vector. Equation (2.47) then shows that
σ = τxx , and (2.48) shows that τxy = 0. This solution therefore corresponds to
the special case in which the x direction is already a principal stress direction, and
τxx is a principal stress. In general, this will not be the case, and we must proceed
by setting the bracketed term to zero:

σ 2 − (τxx + τyy)σ + (τxxτyy − τ 2
xy) = 0. (2.52)

The bracketed term in (2.51) is the determinant of the matrix (τ − σ I), so (2.52)
can be written symbolically as det(τ − σ I) = 0, which is the standard criterion
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for finding the eigenvalues of a matrix. This equation is a quadratic in σ , and
will always have two roots, which will be functions of the two parenthesized
coefficients that appear in (2.52). Before discussing these roots, we note that
as the two principal stresses are scalars, their values should not depend on the
coordinate system used. Therefore, the two coefficients (τxx + τyy) and (τxxτyy −
τ 2
xy), must be independent of the coordinate system being used; this could also

be shown more directly by adding (2.25) and (2.26). These two combinations of
the stress components are known as invariants, and are discussed in more detail
in a three-dimensional context in §2.8.

The quadratic formula shows that the two roots of (2.52) are given by the
two values σ1 and σ2 from (2.37) and (2.38). If σ takes on one of these two
values, (2.47) and (2.48) become linearly dependent. In this case, one of the two
equations is redundant, and we can solve (2.47) to find

tan θ = ny
nx

= 2τxy
(τxx − τyy)± [4τ 2

xy + (τxx − τyy)2]1/2 , (2.53)

where the + sign corresponds to σ1, and the − sign corresponds to σ2. Using
the trigonometric identity tan 2θ = 2 tan θ/(1 − tan2 θ), it can be shown that
(2.53) is consistent with (2.33). These two directions, corresponding to the two
orthogonal unit eigenvectors, will define a new coordinate system, rotated by an
angle θ from the x direction, in which the shear stresses are zero. This coordinate
system is often referred to as the principal coordinate system.

2.4 Graphical
representations of
stress in two
dimensions

A simple graphical construction popularized by Mohr (1914) can be used to
represent the state of stress at a point. Recall that (2.31) and (2.32) give expressions
for the normal stress and shear stress acting on a plane whose unit normal
direction is rotated from the x direction by a counterclockwise angle θ . Now
imagine that we are using the principal coordinate system, in which the shear
stresses are zero and the normal stresses are the two principal normal stresses.
In this case we replace τxx with σ1, replace τyy with σ2, replace τxy with 0, and
interpret θ as the angle of counterclockwise rotation from the direction of the
maximum principal stress. We thereby arrive at the following equations that give
the normal and shear stresses on a plane whose outward unit normal vector is
rotated by θ from the first principal direction:

σ = (σ1 + σ2)

2
+ (σ1 − σ2)

2
cos 2θ , (2.54)

τ = −(σ1 − σ2)

2
sin 2θ . (2.55)

These are the equations of a circle in the (σ , τ ) plane, with its center at the point
{σ = (σ1 +σ2)/2, τ = 0}, and with radius (σ1 −σ2). In contrast to the standard
parameterization in which the angle θ is measured in the counterclockwise
direction, this circle is parameterized in the clockwise direction, with angle 2θ .
This becomes clear if we note that cos 2θ can be replaced with cos(−2θ) in (2.54),
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Fig. 2.6 Mohr’s circle
construction (see text
for discussion).
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and − sin 2θ can be replaced with sin(−2θ) in (2.55). A generic Mohr’s circle is
shown in Fig. 2.6a. A detailed discussion of the use of Mohr’s circle in rock and
soil mechanics is given by Parry (1995).

Many of the important properties of the two-dimensional stress tensor can
be read directly off of the Mohr’s circle. For example, at point P, when θ = 0,
there is no rotation from the σ1 direction, and indeed Mohr’s circle indicates
that (σ = σ1, τ = 0). Similarly, consider the plane for which θ = 90◦. This
plane is rotated counterclockwise by 90◦ from the σ1 direction, and therefore
represents the σ2 direction. This plane is represented on Mohr’s circle by the
point that is rotated clockwise by 2θ = 180◦, which is point Q on Fig. 2.6a,
where we find (σ = σ2, τ = 0). This construction also clearly shows that the
maximum shear stress has a magnitude equal to the radius of the Mohr’s circle,
and occurs on planes for which 2θ = ±90◦, which is to say θ = ±45◦. These two
planes bisect the two planes on which the principal normal stresses act, which are
θ = 0◦, 90◦.

Point A on the Mohr’s circle in Fig. 2.6a shows the stresses acting on a generic
plane whose unit normal vector is rotated by angle θ from the σ1 direction. This
direction can be denoted as the x direction, and these stresses can therefore be
denoted by (σ = τxx , τ = τxy). Now consider the plane that is rotated by an
additional 90◦. For this plane, the additional increment in 2θ is 180◦, and the
stresses are represented by the point B, which is located at the opposite end of
a diameter of the circle from point A. This direction can be denoted as the y
direction, in which case the x and y directions define an orthogonal coordinate
system. However, the stresses at point B on Mohr’s circle must be identified as
(σ = τyy, τ = −τyx). This is because it is implicit in (2.55) that the tangential
direction is rotated 180◦ counterclockwise from the normal direction of the
plane in question, which would then correspond to the −x direction instead of
the +x direction.

It is also seen from Mohr’s circle that the mean value of the two normal
stresses, (τxx + τyy)/2, is equal to the horizontal distance from the origin to the
center of Mohr’s circle, which is (σ1 +σ2)/2. This is another proof of the fact that
the value of the mean normal stress is independent of the coordinate system used.
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Mohr’s circle can also be used to graphically determine the two principal
stresses, and the orientations of the principal stress directions, given knowledge
of the components of the stress tensor in some (x, y) coordinate system. We first
plot the point (τxx , τxy) on the (σ , τ) plane, and note that these two stresses
will be the normal and shear stresses on the plane whose outward unit normal
vector is ex. This direction is rotated by some (as yet unknown) angle θ from the
σ1 direction. We next plot the stresses (τyy, −τyx) on the (σ , τ) plane, and note
that these represent the stresses on the plane with outward unit normal vector
ey. This direction is therefore rotated by an angle θ + 90◦ from the σ1 direction.
In accordance with the earlier discussion, the sign convention that is used for
the shear stress on this second plane on a Mohr’s diagram is opposite to that
used when considering this as the second direction in an orthogonal coordinate
system; hence, this second pair is plotted as (τyy, −τyx). As these two planes
are rotated from one another by 90◦, they will be separated by 180◦ on Mohr’s
circle; hence, the line joining these two points will be the diameter of Mohr’s
circle. Once this diameter is constructed, the circle can be drawn with a compass.
The two points at which this circle intersects the σ -axis will be the two principal
stresses, σ1 and σ2. The angle of rotation between the x direction and the σ1
direction can also be read directly from this circle.

Mohr’s circle can also be used to graphically find the orientation of the plane
on which certain tractions act (Kuske and Robertson, 1974). Consider point
D in Fig. 2.6b, at which the traction is given by (σ , τ ). First note that ∠DBA =
π−∠DBC. Next, note that ∠DAB and ∠ADB are two equal angles of an isosceles
triangle, the third angle of which is ∠DBA. It follows that ∠DAB = θ . The chord
AD therefore points in the direction of the outward unit normal vector to the
plane in question. Since ∠ADC is inscribed within a semicircle, we know that
∠ADC = π/2. Chords AD and DC are therefore perpendicular to each other,
from which it follows that chord CD indicates the direction of the plane on which
the tractions are (σ , τ ). This construction is sometimes useful in aiding in the
visualization of the tractions acting on various planes.

There are other geometrical constructions that have been devised to repre-
sent the state of stress at a point in a body. Most of these are less convenient
than Mohr’s circle, and to a great extent these graphical approaches, once very
popular, have been superseded by algebraic methods. Nevertheless, we briefly
mention Lamé’s stress ellipsoid, which in two dimensions is a stress ellipse. To
simplify the discussion, assume that we are using the principal coordinate system,
in which case it follows from (2.9) and (2.10) that

p1(n) = σ1n1 and p2(n) = σ2n2, (2.56)

where we have let x → 1, y → 2, and have noted that, by construction, τ12 = 0.
Since n is a unit vector, we see from (2.56) that

(p1/σ1)
2 + (p2/σ2)

2 = (n1)
2 + (n2)

2 = 1. (2.57)

The point (p1, p2) therefore traces out an ellipse whose semimajor and semiminor
axes are σ1 and σ2, respectively (Fig. 2.7). Each vector from the origin to a point



Jaeger: “chapter02” — 2006/12/15 — 09:53 — page 26 — #18

26 Chapter 2

Fig. 2.7 Lamé’s stress
ellipse (see text for
description).

(p1, p2)

p1

p2

�2

�1

on the ellipse represents a traction vector that acts on some plane passing through
the point at which the principal stresses are σ1 and σ2. However, although the
Lamé stress ellipse shows the various traction vectors that act on different planes,
it does not indicate the plane on which the given traction acts. In general, only
when the vector OP lies along one of the principal directions in Fig. 2.7 will the
direction of the plane be apparent, since in these special cases the traction is
known to be normal to the plane. In the more general case, the direction of the
unit normal vector of the plane on which the traction is (p1, p2) can be found
with the aid of the stress-director surface, which is defined by

(p2
1/σ1)+ (p2

2/σ2) = ± 1. (2.58)

For the case which is most common in rock mechanics, in which both principal
stresses are positive, the + sign must be used in (2.58), and the surface is an ellipse
with axes

√
σ1 and

√
σ2. The outward unit normal vector of the plane on which

the traction is (p1, p2) is then given by the tangent to the stress-director ellipse at
the point where it intersects the stress ellipsoid (Chou and Pagano, 1992, p. 200).
Proof of this assertion, and more details of this construction, can be found in
Timoshenko and Goodier (1970) and Durelli et al. (1958).

One interesting fact that is more apparent from the Lamé construction than
from Mohr’s circle is that not only does the magnitude of the normal component
of the stress take on stationary values in the principal directions, but the magni-
tude of the total traction vector also takes on stationary values in these directions.
In particular, the maximum value of |p| is seen to be equal to σ1, and occurs in
the direction of the major principal stress.

Most of the manipulations and transformations described above are concerned
with the values of the stress and traction at a given “point” in the rock. In
general, the state of stress will vary from point to point. The equations that
govern these variations are described in §5.5. The state of stress in a rock
mass can either be estimated based on a solution (either numerical or analyt-
ical) of these equations (Chapter 8), or from stress measurements (Chapter 13).
In order to completely specify the state of stress in a two-dimensional rock
mass, it is necessary either to know the values of τxx , τyy, and τxy at each
point in the body, or, alternatively, to know at each point the values of the
two principal stresses σ1 and σ2, along with the angle of inclination between
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the x direction and, say, the σ1 direction. Although it is difficult to display all
of this information graphically, there are a number of simple graphical repre-
sentations that are useful in giving a partial picture of a stress field. Among
these are:

1 Isobars, which are curves along which the principal stress is constant. There are
two sets of isobars, one for σ1 and one for σ2. A set of isobars for one of the
principal stresses, say σ1, must by definition form a nonintersecting set of curves.
However, an isobar of σ1 may intersect an isobar of σ2.

2 Isochromatics, which are curves along which the maximum shear stress (σ1 −
σ2)/2, is constant. These curves can be directly found using the methods of
photoelasticity, which is described by Frocht (1941) and Durelli et al. (1958).

3 Isopachs, which are curves along which the mean normal stress (σ1 + σ1)/2 is
constant. It is shown in §5.5 that this quantity satisfies Laplace’s equation, which
is the same equation that governs, for example, steady-state temperature distri-
butions, or steady-state distributions of the electric field, in isotropic conducting
bodies. Hence, the isopachs can be found from analogue methods that utilize
electrically conducting paper that is cut to the same shape as the rock mass under
investigation. This procedure is discussed by Durelli et al. (1958).

4 Isostatics, or stress trajectories, are a system of curves which are at each point
tangent to the principal axes of the stress. As the two principal axes are always
orthogonal, the two sets of isostatic curves are mutually orthogonal. Since a
free surface is always a principal plane (as it has no shear stress acting on it), an
isostatic curve will intersect a free surface at a right angle to it.

5 Isoclinics, which are curves on which the principal axes make a constant angle
with a given fixed reference direction. These curves can also be obtained by
photoelastic methods.

6 Slip lines, which are curves on which the shear stress is a maximum. As the
maximum shear stress at any point is always in a direction that bisects the two
directions of principal normal stresses, these lines form an orthogonal grid.

2.5 Stresses in
three dimensions

The theory of stresses in three dimensions is in general a straightforward exten-
sion of the two-dimensional theory. A generic plane in three dimensions will have
a unit normal vector n = (nx , ny, nz). The components of this vector satisfy the
normalization condition (nx)2 + (ny)2 + (nz)2 = 1. A three-dimensional version
of the argument accompanying Fig. 2.2b leads to the following generalization
of (2.6):

p(n) = nxp(ex)+ nyp(ey)+ nzp(ez). (2.59)

The components of the three traction vectors that act on planes whose outward
unit normals are in the three coordinate directions are denoted by

p(ex) = [τxx τxy τxz]T, (2.60)
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p(ey) = [τyx τyy τyz]T, (2.61)

p(ez) = [τzx τzy τzz]T. (2.62)

Substitution of (2.60)–(2.62) into (2.59) leads to

px(n) = τxxnx + τyxny + τzxnz, (2.63)

py(n) = τxynx + τyyny + τzynz, (2.64)

pz(n) = τxznx + τyzny + τzznz, (2.65)

which can be written in matrix form as p(n) = τTn, that is,
px(n)py(n)
pz(n)


 =


τxx τyx τzx
τxy τyy τzy
τxz τyz τzz





nxny
nz


. (2.66)

The three-dimensional analogue of the argument illustrated by Fig. 2.3b would
show that the conjugate terms in the three-dimensional stress tensor are equal,
that is,

τyx = τxy, τyz = τzy, τzx = τxz. (2.67)

Hence, (2.66) can also be written as p(n) = τn.
The question can again be asked as to whether or not there are planes on which

the shear stresses vanish. On such planes, the traction vector will be parallel to
the outward unit normal vector, and therefore can be written as p = σn, where
σ is some scalar. But as p(n) = τn, we have τn = σn = σ In, and therefore
again arrive at the eigenvalue problem (τ − σ I)n = 0, §2.3 (2.46), that is,

τxx − σ τxy τxz
τyx τyy − σ τyz
τzx τzy τzz − σ





nxny
nz


 =


0

0
0


. (2.68)

From this point on, the development follows that for the two-dimensional theory.
Although (nx , ny, nz) = (0, 0, 0) is obviously a solution to (2.68), it is inadmissible
because it does not satisfy the condition that n · n = 1. Admissible solutions can
be found only if the determinant of the matrix (τ − σ I) vanishes (Lang,1971).
When the determinant is expanded out, it takes the form

σ 3 − I1σ 2 − I2σ − I3 = 0, (2.69)

where

I1 = τxx + τyy + τzz, (2.70)

I2 = τ 2
xy + τ 2

xz + τ 2
yz − τxxτyy − τxxτzz − τyyτzz, (2.71)

I3 = τxxτyyτzz + 2τxyτxzτyz − τxxτ
2
yz − τyyτ

2
xz − τzzτ

2
xy. (2.72)

The fact that the stress tensor is symmetric ensures that (2.69) has three real roots.
These roots are conventionally labeled such that σ1 ≥ σ2 ≥ σ3. Each of these
roots will correspond to an eigenvector that can be labeled as n1 = (n1

x , n1
y , n

1
z),

etc. Although, in general, eigenvectors are arbitrary to within a multiplicative


