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Foreword

welve years ago Mark Munro asked me to write something for the Web site he was build-
Ting for his company, Write Track Media. | had already been working with him for about

three years: me as an editor and in-house FileMaker developer at the country’s second-
largest record company, and Mark as outside FileMaker and AppleScript developer. He had
helped build the departmental Mac-based database of discs, tapes, and videos with up-to-date
listings of all their artists, prices, genres, formats, and so on. But the major part of the project,
and where Mark was proving so invaluable, was in the system'’s output.

We needed to produce a monthly pocket-sized catalog of the active product — about 13,000
data records. Mark automated production so that | could generate a 180-page complexly styled
catalog — using FileMaker Pro, AppleScript, and Quark — at the push of a button. We needed
to constantly produce multipage order forms with elaborate line listings and scannable bar-
codes. Mark automated these so that one button would trigger the form to build from scratch:
Quark firing up, new blank documents opening, text boxes being created and placed, text fly-
ing into the boxes, picture boxes being created, AppleScript running off and building barcode
images for each product, bringing them back, dropping them into the picture boxes, sizing
them to fit.... All this looked like magic to the IT guys that would drop by occasionally, none of
them Mac users, with no idea that an application like AppleScript existed that could make the
programs all “talk” to each other. It was magic to us, too: the documents were data driven, accu-
racy was better than it ever had been, and the automation was saving countless hours of typ-
ing, page layout, and proofreading every week.

New record formats were coming into being; sales needs and the documents supporting them
were changing often. | was pressed for time and got to work with Mark a lot. The thrill was that |
could call him and tell him what | needed and he’d never get nervous or show hesitation, and
he'd never say it couldn’t be done. There was always a way, and for him, always a good way. He
worked fast and methodically, kept me briefed, and generally delivered ahead of his target
date. | would send lists of fields, find and sort rules, and layout requirements. He would send
code. | wrote for his Web site, “There seems to be no limit to the complexity of the scripting and
automation jobs they are able to take on, and they do it with an energy, focus, speed, and level-
headed aplomb that are to be admired.” “They,” of course was all Mark himself, and | feel the
same twelve years later.

It's not surprising to me that Mark, early in his career, was a performing magician who got his
start with databases when he decided to computerize the inventory at Tannen’s, the New York
City magic supply mecca where he was working. | don’t mean this in the hokey, “Oh, this guy
works magic” sense; | mean that like a skilled performer he has brought to his work in these
intervening years a rigorous, practiced, polished, and intensely methodical approach. He has
developed a remarkable overview of the effects he wants to achieve. He has codified a highly
refined aesthetic and has devoted himself to the rigorous practice that it takes to express it.

I went to the Apple Store last night and happened to mention to a young clerk that my friend
was writing a developer guide to AppleScript. | was floored when he said, “Oh AppleScript —
nobody talks about that around here — | think there’s one guy that knows something about it
and was thinking of using it to automatically update his phone, but he only knew how to get it



to turn on and off.” Luckily, that's just ignorance, even if it's coming from an Apple employee:
AppleScript remains an unparalleled development tool for desktop automation. It's not easy,
and that’s why there are specialists like Mark Munro. Sometimes it’s hard to envision what it's
capable of because it takes effort to zoom out, like a movie camera craning overhead, to get a
real sense of what's possible to automate. Then building the solution can be daunting and
time-consuming. It takes an effort to stop what you're doing by rote, and to devote time to
changing direction. The resulting time savings and ease of operation can be thrilling.

I've heard a professional developer say, “What is good code? Good code is code that works.” |
don't think Mark would say that. There’s code that works and there’s good code that works.
It's not a fussy, perfectionist approach, either, just a sense of the intrinsic RIGHTness of an
approach. He abhors wasted time and repetition of effort and spends remarkable effort in
streamlining his FileMaker development practices and templates. This is to save time and
money for his clients and, | think, to keep himself moving forward. It's obvious to me why his
company’s motto is: “Write Track Media creates solutions that eliminate repetition and allow
our clients to focus on their highest potential.”

As a fledgling FileMaker developer, | have to admit that working with Mark over the years has
been an occasional wellspring of inferiority feelings: “Is this the standard? Can | ever be a devel-
oper who's worth his salt if I'm not as good as Mark?” Maybe | can relax a little. I've come to
believe that in all likelihood Mark’s unique: perhaps there’s no one as methodical and philo-
sophically rigorous at what he does. But now that he’s taking the time to codify his theories and
his method, maybe we can get a little closer.

Walker Stevenson
FileMaker Developer
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Introduction

R —

I n the early 1990s, | was working as a Computer Network and Telecommunications Manager

at the New York City headquarters of a company now known as Jack Morton Worldwide. In

addition to my other responsibilities, | was tasked with creating FileMaker Pro databases to
help manage the office’s information. At that time, FileMaker was still somewhat crude, and had
been since | began using it in the late 1980s.

During this time, | learned how to program HyperCard and was having a lot of fun building cus-
tom applications. Then | received a copy of the AppleScript Developer’s Toolkit and Scripting
Kit, an add-on piece of software for the Macintosh Operating System. | began converting the
HyperTalk scripts in my applications to AppleScript. Almost immediately HyperCard was rele-
gated to my archives in favor of AppleScript.

This was still a year or two before the Internet exploded in popularity. Finding documentation
and sample scripts was difficult, and very few applications supported scripting. These difficul-
ties led to many frustrating and yet ultimately rewarding, struggles to figure out how to suc-
cessfully automate one task after another. However, as support for scripting spread out into the
Mac OS and in third-party software, it became clear that workflow automation on a Mac was
going to be a huge phenomenon.

This was a driving factor for founding Write Track Media in 1994 to specialize in the develop-
ment of workflow automation solutions. Since that time, | have worked with many wonderful
clients in a variety of different industries. Many times since then, | have entertained the notion
of writing a book on AppleScript. Some of the techniques and ideas that | used daily, many cre-
ated out of the necessity of the moment, seemed good enough to share. Believing that good
ideas only become great when they are shared with others was a driving factor that led me to
avail myself of the opportunity to write this book.

I tried to structure this book to appeal to programmers of any skill level, including those who
have never programmed before. | start with the basics and gradually work toward more
advanced material to make this book beneficial to all. It is laced with advice, ideas, and tech-
niques gleaned from years of trial and error. Hopefully, you will find these useful and encourag-
ing in your future automation endeavors.

AppleScript is a wonderful language to know and is powerful enough to automate virtually any
task. It was a rewarding experience to focus on the language in a systematic fashion while writ-
ing this book. I hope you enjoy reading it as much as | have writing it.

Please let me know about issues you find in the book or offer suggestions for subjects you'd like
to see covered in a future edition. Visit www . writetrackmedia.com/contact/ to send
me an e-mail.



Getting the Most Out of This Book

The chapters in this book are organized into five parts. They are organized with the assumption
that a reader will read the book from cover to cover. The material starts with the basics and
gradually moves to more advanced material.

Part I, “AppleScript: The Power of Automation” includes an introduction and history of
AppleScript as well as discussions of workflow automation with AppleScript and script deploy-
ment options. It also includes a presentation of a comprehensive set of naming and usage
standards.

Part I, “Learning the AppleScript Language” begins with a chapter on AppleScript basics fol-
lowed by chapters detailing each class of data that can be manipulated with scripts. From there,
chapters discuss logical branching with i £-then statements, repeat loops, error containment
and management, and an in-depth look at how the standard scripting addition extends
AppleScript’s functionality.

Part Ill, “Using Scripts to Control Applications” reveals AppleScript’s capability to tap into the
functionality of standard, off-the-shelf software to create powerful multi-application workflows.
Also, the three “faceless” applications — Image Events, Database Events, and System Events —
included with the Macintosh operating system that provide additional functionality for
AppleScript are covered in detail.

Part IV, “Using Subroutines and Open-Ended Programming” contains chapters that discuss the
creation of subroutines, writing open-ended code, and an advanced discussion of using a hier-
archical method for dividing code into subroutines.

Part V, “Organizing Code into Modules and Libraries for Multi-Module Solutions” continues to
push into more advanced topics, discussing the development of complex AppleScript solutions
that are spread across more than one script file.

Parts IlI-V contain several versions of an Image Batch Processing script that evolves over five
chapters. Each successive version of the script is improved with concepts that are introduced in
that chapter.

All of the code in this book was created and tested in Mac OS X 10.6.

Using the Book’s Icons

There are four margin icons that are used throughout the book to provide additional informa-
tion, tips, warnings, or indications of where to find additional information.



NOTE

Notes highlight useful information that you should take into consideration.

TIP

Tips provide additional bits of advice that make particular features quicker or easier to use.

CAUTION

Cautions warn you of potential problems before you make a mistake.

CROSS-REF
Watch for the Cross-Ref icon to learn where in another chapter you can go to find more information on a particular
topic.

Accessing the Book’s Web Site

Several of the longer scripts presented in this book are available for download on Wiley’s com-
panion Web site. Visit www . wileydevreference. com for more information and to down-
load the script files.
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Introduction to
AppleScript Programming

ant command language that can communicate with and
control scriptable applications and scriptable features of
Macintosh Operating System (Mac OS) X.

Q ppleScript is an Open Scripting Architecture (OSA)-compli-

The OSA is a mechanism within the Mac OS that provides a library
of functions and allows inter-application communication and con-
trol by sending and receiving messages called Apple Events.

An Apple Event is a basic message exchange system of the OSA that
is used to send instructions to an application and optionally, send
back a result. Apple Events can be used to control inter-process
communication within an application, between applications on a
single computer, and between applications on a remote computer.
Figure 1.1 illustrates the path of an Apple Event message.

Since 1994, when System 7.5 was released, most Mac users have
been unaware that they send Apple Events every day. For example,
each time they double-click a document to open it, an Apple Event
is responsible for instructing the appropriate application to launch
and to open the file, as shown in Figure 1.2.

AppleScript provides an easy to learn, English-like language that
enables users to write scripts that send and receive Apple Events.
Each script acts like a new feature of the OS or an application.
Scripts can integrate third-party applications, creating custom solu-
tions that perform very specific tasks.

Because of its English-like syntax, even novice programmers can
build scripts to perform virtually any function. With pervasive sup-
port of AppleScript throughout the Mac OS and many third-party
applications, it is the ideal platform to create efficiency-rich, work-
flow automation solutions.

This amazing and award-winning technology provides a simple
and affordable way to automate repetitive computing tasks and
leave users free to focus their attention on more creative tasks.

In This Chapter

An introduction to
AppleScript

Locating AppleScript
applications and other
resources

Looking at AppleScript’s
resources and unique
characteristics

Who uses AppleScript
and what they automate

Looking at AppleScript’s
influence
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Figure 1.1

The path of an Apple Event message sending a command to an application
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Figure 1.2

The underpinnings of an Apple Event opening a document
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A Brief History of AppleScript

AppleScript and its associated tools were conceived, designed, and implemented between
1989 and 1993. It was a long-term investment in fundamental infrastructure that matured over
a span of several years (see Figure 1.3).
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Figure 1.3

A timeline of the history of AppleScript

— 1987: HyperCard released

— 1989: AppleScript conceived

— 1991: System 7 released with AppleEvents Foundation

[~ 1991: AppleScript product begins

— 1992: AppleScript reaches beta

— 1993: AppleScript 1.0 Toolkit released

— 1994: System 7.5 released with AppleScript

— 1997: System 8.0 released with a Scriptable Finder

— 1998: AppleScript 1.3 released as a native PowerPC extension
— 1998: Seybold names AppleScript 1.3 “Technology of the Year”
— 2001: Mac 0S 10.0 released with AppleScript

— 2006: AppleScript is #17 on MacWorld’s
“30 Most Significant Mac Products”list

A
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Often considered a precursor to and inspiration for AppleScript, HyperCard was released in
1987. This software enabled novice programmers to rapidly create custom tools that would
carry out a set of specific processes. Featuring an easy-to-learn, English-like scripting language
called HyperTalk, it was easier to learn and use than other programming languages available at

that time.

AppleScript was officially conceived in 1989 as a research project by the Advanced Technology
Group (ATG) at Apple Computer and was code-named “Family Farm.” The research team was
led by Larry Tesler and included Mike Farr, Mitchell Gass, Mike Gough, Jed Harris, Al Hoffman,
Ruben Kleiman, Edmund Lai, and Frank Ludolph. Their goal was to create a new system-level
development environment for the Mac OS that would allow for inter-application communica-
tion and control and provide a user-level language. The original group was disbanded in mid-
1990 and new teams were assembled to design and implement the ideas first conceived.

The first step was the development of Apple Events, which is the inter-application communica-
tion foundation of AppleScript in the OS. Written in Pascal, like much of the Mac OS at the time,
this foundation needed to be in place before the development of AppleScript could begin. The
AppleScript project officially began in April 1991, just months before Mac OS 7, when the new
Apple Events foundation was released.
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NOTE

The AppleScript project was code named “Gustav” after a team member’s dog.

In September 1992, AppleScript reached beta. However, in January 1993, the original team was
disbanded when several leaders left the project. It wasn't until April of that year that the
AppleScript 1.0 Developer’s Toolkit shipped as a stand-alone product that could be installed on
any Mac running System 7. In September, AppleScript version 1.1 was included as part of System
7.1.1 (System 7 Pro). In December, the first “end user” release — AppleScript 1.1 Developer’s
Toolkit and Scripting Kit — was released. Finally, in 1994, AppleScript was ready to revolutionize
how people use computers when it took its place as an official part of Macintosh System 7.5.

Since that time, AppleScript has slowly evolved into the invaluable tool that we know today. In
1997, the Macintosh Finder finally became scriptable, eliminating the need to use the Finder
scripting extension. When Macintosh OS 8.0 was released in July 1997, it included AppleScript
version 1.1.2 with many minor improvements.

NOTE
In 1997, Apple had plans to eliminate AppleScript in order to cut expenses but, thankfully, this plan was thwarted by
a campaign by loyal users of the technology.

In October 1998, AppleScript 1.3 was released, recompiled as a native PowerPC extension and
included Unicode support. In that year, Steve Jobs demonstrated AppleScript at Seybold, and
Macworld magazine named AppleScript 1.3 the “Technology of the Year.” In 2006, AppleScript
held position #17 on Macworld’s list of the 30 most significant Mac products ever.

NOTE

Read the entire history of AppleScript at www . cs . utexas.edu/~wcook/Drafts/2006/ashopl.
pdf.

A 1999 technology study by research firm GISTICS estimated that AppleScript produced more
than $100 million in annual savings for North American media firms. Today, Google returns
more than two million results when searching for the word “AppleScript.”

In Mac OS 10.6, released in 2009, AppleScript, Standard Additions, and all AppleScript-related
system applications, such as System Events, are now 64-bit capable.

The technology has flourished and now boasts a thriving and happily efficient user base.

Finding AppleScript Resources

AppleScript is made up of various elements located on each Mac computer. These elements
include applications, scripting additions, and components.
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Applications

AppleScript developers use two applications: the AppleScript Editor and the Folder Actions
Setup application.

NOTE

Mac 0S 10.5 included a folder called “AppleScript” inside the /applications/ folder that contained three appli-
cations: Script Editor, AppleScript Utility, and Folder Action Setup. Mac 0S 10.6 doesn’t include this folder. The Script
Editor is now the “AppleScript Editor” and is in the /ut i 1it ies/ folder; the options accessible from the
AppleScript Utility are now in the Editor’s preference panel; and Folder Action Setup is now in the /System/
Library/CoreServices folder.

AppleScript Editor

Probably the most important application in the AppleScript toolbox is the AppleScript Editor,
which is located in the /Applications/Utilities/ folder. This application is used to cre-
ate, write, edit, compile, run, and save scripts. It contains many features that assist a developer
in learning the language, writing scripts, and exploring the command library of scriptable third-
party applications.

]

CROSS-REF

See Chapter 6 for more information about using the AppleScript Editor.

©

Folder Actions Setup

The Folder Actions Setup application, located in /System/Library/CoreServices/,is
used to assign script actions to folders. This enables a script to respond to various folder actions,
such as the arrival or removal of a file or folder, and perform a sequence of automated tasks on it.

NOTE

You can access the Folder Actions Setup application by dicking a folder while pressing the Ctrl key or by clicking the
right button on your mouse and selecting the Folder Actions Setup option from the contextual menu.

<

The Folder Actions Setup window, shown in Figure 1.4, lets you enable and disable folder
actions globally as well as add, show, and remove folders on a computer. Once you have added
a folder, you can attach one or more scripts to it.

CROSS-REF

See Chapter 16 for more information about using Folder Actions.

©



e ______________Chapter 1:introduction to AppleScript F

Figure 1.4

The Folder Actions Setup window
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Scripting additions

J A scripting addition is used to extend the AppleScript language by providing a set of additional
commands. Scripting additions can be stored in several locations on a computer. Apple
includes several scripting additions in the OS and you can find additional third-party scripting
additions on the Internet.

CROSS-REF

See Chapter 16 for more information about installing and using scripting additions.

TIP
A set of sample scripts provided by Apple and installed as part of the Mac 0S 10.6 installation is located at
/System/Library/Scripts/.

Components

Components are files that provide basic functionality for AppleScript, Apple Events, and other
OSA-related languages. While the process of using or developing scripts does not require you
to be concerned with these components, they are provided in this book for informational pur-
poses only. Except when adding or removing additional language components, such as
JavaScript, you should never attempt to remove, modify, or be concerned with the where-
abouts of any of these components.

The Apple Event Manager provides an application programming interface (API) for sending and
receiving Apple Events, thereby providing support for the creation of scriptable applications.



It exists as part of the CoreSErvices. framework and is called the AE . framework. This is
important for those creating scriptable applications but not important for those writing scripts
with AppleScript.

Likewise, the OpenScripting. framework is a part of the Carbon . framework and is not
something AppleScript users and developers need to worry about. It defines data structures,
routines, and resources that support scripting components regardless of the language. It also
compiles, executes, loads, and stores scripts.

The AppleScript . component file, the default OSA scripting language component pro-
vided by Apple, enables a computer to use the AppleScript language. It is located at /System/
Library/Components.

Other OSA component files, such as the JavaScript . component, can be installed in
~/Library/Components for each user account that will use it. If your computer is connected
to an office network, you may need to contact your network administrator before installing addi-
tional OSA components.

Understanding the Unique Characteristics
of AppleScript

While old-fashioned macro recording utilities were quite useful in their time — they could sim-
ulate a series of literal keystrokes and mouse clicks, respectively — it was difficult to use them in
a dynamic and practical manner. With AppleScript you can not only automate a sequence of lit-
eral actions, but also you can create a dynamic script that includes logical branches, variable
content, and options for different behavior depending on specific conditions. This gives
AppleScript the power of a real programming language.

AppleScript possesses more unique characteristics that add to its appeal, such as its English-like
syntax, the fact that it is universally open-ended, its deep level of access into the Mac OS frame-
work and the frameworks of third-party applications, and its consistency between OS updates.

English-like syntax

One of the most unique characteristics of AppleScript is its English-like syntax. While some
detractors might say it is not even close to “natural spoken English,” most would agree that it is
certainly more like a spoken language than most other scripting and programming languages.
The difference in syntax can be illustrated with a few simple examples.

The following examples present a sort of Rosetta Stone of programming languages. The code in
each example performs exactly the same function: It builds a text-based list of numbers within a
range specified by two variables. At the end of each script, the resulting value will be a
sequence of numbers from 25 to 30 with a carriage return after each number.



