‘.l‘
[N
e

Mark Conway Munro

AppleScript

www.wileydevreference.com






AppleScript






AppleScript

Mark Conway Munro

WILEY
Wiley Publishing, Inc.



AppleScript®

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-56229-1

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-
6011, fax 201-748-6008, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORKAS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2010925705

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. AppleScript is a
registered trademark of Apple, Inc. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc. is not associated with any product or vendor mentioned in this book. AppleScript® Developer Reference is an
independent publication and has not been authorized, sponsored, or otherwise approved by Apple, Inc.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.


www.wiley.com
http://www.wiley.com/go/permissions

To my father,

Philip Conway Munro,

for teaching me the difference between
hardware and software at an early age.



Credits

Acquisitions Editor
Aaron Black

Executive Editor
Jody Lefevere

Project Editor
Katharine Dvorak

Technical Editor
Rob Vanderwerf

Copy Editor
Lauren Kennedy

Editorial Director
Robyn Siesky

Business Manager
Amy Knies

Senior Marketing Manager
Sandy Smith

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Project Coordinator
Lynsey Stanford

Graphics and Production Specialists
Andrea Hornberger
Erin Zeltner

Quality Control Technician
John Greenough

Proofreading
C. M. Jones

Indexing
WordCo Indexing Services

Media Development Project Manager
Laura Moss

Media Development Assistant Project Manager
Jenny Swisher

Media Development Associate Producer
Doug Kuhn



About the Author

Mark Conway Munro is an entrepreneur who turned a software-writing hobby into a business.
Mark was born in Indiana and raised in Ohio. In 1986, Mark moved to New York City. As the man-
ager of Louis Tannen’s Magic Store in New York City, he taught himself the Macintosh Computer
and FileMaker Pro while building a database of inventory, which eventually led to the develop-
ment of a networked order processing solution. From there he went on to work for the Jack
Morton Company, where he was the Network and Telecommunications Manager. He began
developing custom solutions with HyperCard and FileMaker Pro in his spare time. After the
release of AppleScript in 1992, he refocused his experience with computer networking, training,
technical support, database development, and custom application development. He quickly
transitioned from HyperTalk to AppleScript and began building custom workflow automation
solutions.

Mark founded Write Track Media in 1994, where he continues to develop innovative solutions
that eliminate repetition and optimize computerized workflows. Write Track Media has since
become known for its reputation for excellence, and has developed complex automated solu-
tions for companies in a variety of industries all across the country including Adobe Systems,
The Associated Press, BMG, Dreyfus, Entertainment Weekly, Epson, KraftMaid, McCann-Erickson,
The Miami Herald, MYOB, Nabisco, NASA, Nikon, Random House, Reader’s Digest, Sony Music
Entertainment, and many other companies.

Currently Mark resides in Pennsylvania, where Write Track Media is located. In his spare time, he
enjoys hiking and nature photography.






Contents at a Glance

Foreword XXi
Acknowledgments xxiii
Introduction XXV

Part I: AppleScript: The Power of Automation.........ccceceeecnreccnnecsenss 1

Chapter 1: Introduction to AppleScript Programming 3
Chapter 2: Workflow Automation with AppleScript 21
Chapter 3: AppleScript Deployment Options 31
Chapter 4: Making the Case for Standardization 59

Part ll: Learning the AppleScript Language.......cccccceeeccnnrccccnsneccee 81

Chapter 5: Exploring AppleScript Basics 83
Chapter 6: Getting Started with the AppleScript Editor m
Chapter 7: Working with Text Objects 137
Chapter 8: Working with Numbers and Unit Types 159
Chapter 9: Working with Dates and Times 171
Chapter 10: Other AppleScript Data Classes 181
Chapter 11: Working with Lists 189
Chapter 12: Working with Records 205
Chapter 13: Logical Branching 213
Chapter 14: Looping 227
Chapter 15: Dealing with Script Errors 245
Chapter 16: Getting Started with Scripting Additions 267

Part lll: Using Scripts to Control Applications........ccccceeennnecsccnneees 311

Chapter 17: Controlling Applications with Scripts 313
Chapter 18: Working with Image Events 339
Chapter 19: Working with Database Events 361
Chapter 20: Working with System Events 385

Part IV: Using Subroutines and Open-Ended Programming ....... 409

Chapter 21: Using Subroutines for Non-Linear Programming 411
Chapter 22: Introduction to Open-Ended Programming 433
Chapter 23: Designing a Hierarchical Subroutine Structure 469

Part V: Organizing Code into Modules and Libraries
for Multi-Module SOlUtiONS .......cccceeccnncccsnncssnnecssasessensescnsessnscssess 501

Chapter 24: Introduction to Multi-Module Solutions 503
Chapter 25: Designing Open-Ended, Multi-Module Solutions 535
Appendix: AppleScript Web Resources 563
Index 567






Contents

FOreWOord ..ocvvvteieeneeeeeeeeeeeeeeneeoecaoncaancsasasncsascsssasnsaanens XXi
Acknowledgments. ......oviiiiiininneerrreeccsssseeessnssssetcccssssanns Xxiii
10 T 11 et 4 oY T XXV

Part I: AppleScript: The Power of Automation........ccceeeecneccnnccncscnncsnnes 1

Chapter 1: Introduction to AppleScript Programming.......ccceveeeeennss 3
A Brief History of AppleScript 5
Finding AppleScript Resources 7

Applications 8
Scripting additions 9
Components 9
Understanding the Unique Characteristics of AppleScript 10
English-like syntax 10
Universally open-ended 13
Deep level of access 13
Consistency maintained between updates 14
Exploring the Uses and Users of AppleScript 14
Uses for AppleScript 15
Users of AppleScript 18
Respecting the Power of AppleScript 18
Summary 19

Chapter 2: Workflow Automation with AppleScript.........cccvveeeennn, 21

Defining Workflow Automation 22
Busting some myths about automation 22
Exploring reasons to automate a workflow 25

Using AppleScript for Workflow Automation 26
Understanding the scalability of AppleScript 27
Quantifying the return on investment potential of AppleScript 29

Summary 30

Chapter 3: AppleScript Deployment Options ......coccevvnrieencccennns 31
Exploring AppleScript Formats 31

Saving scripts as files 32
Saving scripts as applications 36

Exploring Script Deployment Locations 39
Mac 0S X installation locations 39
Mac 0S X usage locations 47
Third-party application locations 53

Choosing a Format and Location 56

Summary 58




mm

Chapter 4: Making the Case for Standardization...........cceeveeeeeenss 59
Understanding the Benefits of Standards 59
Consistency 60
Repurposing 60
Enhanced efficiency 60
Improved quality 60
Collaboration 61
Automation 61
Professionalism 61
Exploring the Flexibility of Standards 61
Applying standards within a context 61

Setting your own standards 62
Defining AppleScript Naming Standards 62
The goals of naming standards 62
Naming variables 65
Naming subroutines 67
Defining AppleScript Usage Standards 71
The goals of usage standards 71
AppleScript usage standards 72
Summary 80

Part II: Learning the AppleScript Language........ccccceernrcccnnccscnnccsnnees 81

Chapter 5: Exploring AppleScript BasicS. . ....cvvveeeveecerrsrecsosccanns 83
Understanding AppleScript Terminology 83
Commands 84

Literals 84
Keywords 85
Operators 87

Object classes 89
Variables 95
Statements 97
Subroutines 99

Scripts 929
Looking at AppleScript Comments 100
Commenting methods 100

Uses for comments 101
Frequency of comments 104
Commenting usage conventions 105
Planning Scripts 107
Pre-coding steps 107

Coding steps 109
Summary 110




Chapter 6: Getting Started with the AppleScript Editor.................. 111
Exploring the AppleScript Editor User Interface 112
The script document window 112
Contextual menus 116

Menus 116
Preferences 122

Library window 127

Event Log History window 129
Building the “Hello World” Script 132
(reating the script 132
Expanding the script 134
Summary 136
Chapter 7: Working with Text Objects........coviiveeeerrnnrcscccennas 137
Introduction to Text Objects 137
Text object properties 137

Special consideration for quotes 140
Analyzing Text 140
Counting text 140
Searching text 142
Comparing text 145
Considering and ignoring text 147
Manipulating Text 150
Merging text 150
Splitting text 150
Extracting text 151
Converting text to other data types 154

Using text item delimiters 155
Summary 157
Chapter 8: Working with Numbers and Unit Types...........cccoveeeeen. 159
Introduction to Number Objects 159
Looking at types of numbers 159

Putting a number into a variable 160
Comparing numbers 161
Manipulating Numbers 162
Performing calculations 162
Converting numbers 165
Working with Measurement Unit Types 167
Using measurement types 168
Converting within the type group 168
Converting to other data types 168

Summary 169




Chapter 9: Working with Datesand Times......ccceeeeeeernnneccocccnns 171
Introduction to Date Objects 171

Date object properties 172

Manipulating Date and Time 175
Comparing dates 175

Performing calculations with dates and times 177

Summary 179
Chapter 10: Other AppleScript DataClasses......cccoeeeeeeneececcesss.181
Working with Booleans 181
Working with RGB Colors 182
Working with Aliases 183
Working with Files 185
Working with References 186
Summary 188
Chapter 11: Working with Lists .......ccoiiiiiiiiiieernecenncecennanes 189
Introduction to Lists 189
Looking at list properties 190

Looking at specialty lists 191

Analyzing Lists 192
Counting list items 192

Comparing lists 193

Considering and ignoring text properties 196

Searching in lists 197

Manipulating Lists 197
Converting lists to other data types 198

Extracting list items 198

Adding items to a list 201

Replacing items in a list 202

Removing items from a list 202

Summary 203
Chapter 12: Working with Records........cccviiiiiiieenrrnnnecccccnnss 205
Introduction to Records 205
Comparing an AppleScript record to a database record 206

Looking at record properties 206

Creating a Record 207
Analyzing Records 208
Counting records 208

Comparing records 208

Considering and ignoring text properties 210



Manipulating Records 210
Converting records to other data types 210
Extracting data from a record 210
Adding something to a record 21
Replacing a value in a record 21
Removing a value from a record 212

Summary 212

Chapter 13: Logical Branching........ccciiiiiitnerernecscsoecannccnnss 213

Looking at the Anatomy of an if-then Statement 213
Building a conditional “Hello World” dialog 214
Expanding the equation 215

(reating a Multiple Condition Statement 217

Adding Additional Conditions 219

Using Nested Statements 21

Understanding Common Mistakes 222
Missing parenthesis 223
Missing conditions 223
Conditionally undefined variables 224

Summary 225

Chapter 14: LoOPing...ccceeeieresreeeooecesssssssssccssssssssssccasnns 227

Looking at the Anatomy of a Repeat Statement 228

Defining the Types of Repeat Loops 229
Repeat (until exit) 229
Repeat x times 230
Repeat while 230
Repeat until 231
Repeat with a from x to y {by z} 231
Repeat with a in list 233

Nesting Repeat Loops 233

Using Repeat Loops 235
(reating with repeat loops 235
Modifying with repeat loops 236
Extracting with repeat loops 240
Processing files with repeat loops 242

Summary 243

Chapter 15: Dealing with Script Errors ......ccvvvvveecerrnneccsscccnnas 245

Introduction to Script Errors 245
Defining programming errors 246
Defining situational errors 249

Exploring Error Management 251
Looking at the anatomy of a try command 252
Handling multiple errors 258
Generating your own errors 259

Understanding cascading errors 260




mm

Recording Errors Into a Log File 261
Writing information to the event log 261

Writing errors to text files 262
Looking at the AppleScript and Mac 0S X Errors 263
Summary 265
Chapter 16: Getting Started with Scripting Additions ................... 267
Finding Scripting Additions 267
System Library folder. 267

Library folder 268

User's Home Library folder 268
Embedding Scripting Additions 268
Working with Standard Additions 269
User Interaction 270

File Commands 285

String Commands 289
Cliphoard Commands 291

File Read/Write 293
Scripting Commands 297
Miscellaneous Commands 300

Folder Actions 304
Internet 309
Summary 310

Part lll: Using Scripts to Control Applications.........ccceeseeccnnccccnncceens 311

Chapter 17: Controlling Applications with Scripts .........cvvveveeeeens 313
Introduction to Application Automation 313
Looking at the “tell application” statement 314
Managing timeouts 314
Ignoring an application response 316
Respecting hierarchy when nesting disparate control commands 317
Defining different types of AppleScript support 318
Exploring an Application’s Dictionary 322
Opening a dictionary 322
Exploring the dictionary interface 323
Exploring an application’s dictionary content 324

Using AppleScript to Control Applications 328
Activating, launching, and quitting applications 328
Manipulating the Finder with scripts 329

Controlling Inter-Application Communication 334




Controlling Remote Applications 335
Configuring Remote Apple Events 335
Understanding eppc computer specifiers 336
Sending commands to a remote application 337
Compiling a script using terms from a local application 337

Summary 338

Chapter 18: Working withImageEvents ........ccoiiiiieiiiinennnnnnss 339

Introduction to Image Events 339
Getting started with basic functionality 340
Reading properties of an image file 345
Manipulating an image 348

(reating an Image Batch Processor 354

Summary 359

Chapter 19: Working with DatabaseEvents ..........cceiviiieeeennennss 361

Introduction to Database Events 361
Getting started with basic functionality 362
Working with database records 366
Working with fields 368

Searching a Database N
Searching for text values N
Searching for numeric values 375
Searching for date values 376
Searching for multiple values 378

Importing Records from Tab-Separated Files 379

Summary 384

Chapter 20: Working with SystemEvents .......cccoceettnnneeccccennns 385

Introduction to System Events 385
Getting started with basic functionality 386
Exploring the suites of commands 387

Controlling Non-Scriptable Applications 393
Enabling User Interface Scripting 393
Activating and targeting applications 395
Referencing objects in an application’s interface 396
Accessing information from an interface 400
Performing User Interface Scripting actions 404

(reating a Zipped Archive File with System Events 407

Summary 408




mm

Part IV: Using Subroutines and Open-Ended Programming ...........409

Chapter 21: Using Subroutines for Non-Linear Programming.............. 411
Working with Subroutines 413
(alling a subroutine from a tell application statement 414
Exchanging data with subroutines 415
Identifying command handler subroutines 1
Commenting subroutines 44
Exploring the Benefits of Subroutines 425
Easing developer tasks 425
Reusing code 428
Allowing advanced script design 429
Resolving variable names conflicts 429
Designing a Non-Linear Script 430
Understanding when to delimit a script into subroutines 430
Looking at the methods of delimiting a script 431
Summary 432
Chapter 22: Introduction to Open-Ended Programming ........cccceeevvnnnnnss 433
Understanding the Benefits of Open-Ended Code 434
Makes recycling code easy 434
Improves script quality 434
Encourages consistency 435
Justifies smaller scripts 435
(reating Open-Ended Code 435
Use repeat loops to remove duplicate code 437

Use the Finder selection 438

Provide for an empty selection 439

Allow folders to be processed 440
Dynamically count the name’s length 440

Use text item delimiters 4M

Use variables or script properties 442

Query user input 443

Use subroutines 443
(reating Open-Ended Subroutines 445
Divide code with logical groupings 445

Make smaller subroutines 446

Name subroutines, parameters, and variables generically 447

Avoid branch-style openness 448

Use subroutine parameters for variable input 449

Use records for future parameter expansion 450

Keep subroutines as portable as possible 451




(reating an Open-Ended Image Batch Processor 451
Allow a user to select folders 451

Enable two additional selection methods 452

Choose manipulations 454

Select a custom scale percentage 455

Allow the user to choose an output format 458

Allow the selection of multiple output formats 459

Make a drop application 461

Use subroutines 464

Bring it all together 464
Summary 468
Chapter 23: Designing a Hierarchical Subroutine Structure.............. 469
Defining the Goals of Subroutine Hierarchy 472
Produce a flexible and expandable script 473
Maximize reusable code 473

(reate portable code 473
Achieve a separation of data from function 473
Facilitate a multi-module solution ideology 473
Identifying the Primary Levels of Hierarchy 473
Maintaining flexibility within levels 475
Following proper inter-level communication 475
Identifying Hierarchy-Related Issues 475
Project-specific elements 476
Open-ended elements 478
(reating a Image Batch Processor with a Hierarchical Subroutine Structure 483
Outlining the new subroutine structure 487
Rebuilding the script 488
Summary 499

Part V: Organizing Code into Modules and Libraries
for Multi-Module SOIULIONS .......ccccveecsuncccsnncssnnicssancsssnsessassssasessonnesss 301

Chapter 24: Introduction to Multi-Module Solutions .................... 503
Understanding the Benefits of Multi-Module Solutions 504

Eases developer tasks 504

Allows advanced script design 504

Designing a Multi-Module Solution 505
Defining types of script files 505

Exploring file structure options for complex solutions 507

Understanding inter-script communication 512

Overcoming the Complexities of Multi-Module Solutions 517
Employing good development habits 517

Using logs for tracking 519



mm

Building a Multi-Module Image Batch Processor 522
Designing the new solution 522
Building the Logging Module file 523
Building the Finder Library file 528
Building the Image Events Library file 529
Building the main Image Batch Processor file 530

Summary 534

Chapter 25: Designing Open-Ended, Multi-Module Solutions............ 535

Planning for Change 535
Anticipating business changes 535
Anticipating development changes 542

Upgrading the Image Batch Processor to an Open-Ended, Multi-Module Solution 547
(reating the new module template 547
Setting up the Scale module 550
Setting up the Flip module 551
Modifying the image batch processor module 552
(reating a new Rotate module 560
Further expansion and inspiration 562

Summary 562

Appendix: AppleScript Web Resources.......coveeeeeeereersreccscannss 563

Apple’s Developer Resources 563
Developer Connection main page 563
AppleScript documentation and resource main page 563
Introduction to AppleScript overview page 564
AppleScript language guide 564
AppleScript release notes 564

Mailing Lists 564
Apple’s AppleScript Users 564
Mac Scripting Systems (MACSCRPT) 564

Alternative Script Editor Software 565
Script Debugger 565
Smile 565

Additional Scripting-Related Sites 565
MacScripter 565
Ul Browser 565
MacTech’s Visual Basic to AppleScript guide 565
Write Track Media 566




Foreword

welve years ago Mark Munro asked me to write something for the Web site he was build-
Ting for his company, Write Track Media. | had already been working with him for about

three years: me as an editor and in-house FileMaker developer at the country’s second-
largest record company, and Mark as outside FileMaker and AppleScript developer. He had
helped build the departmental Mac-based database of discs, tapes, and videos with up-to-date
listings of all their artists, prices, genres, formats, and so on. But the major part of the project,
and where Mark was proving so invaluable, was in the system'’s output.

We needed to produce a monthly pocket-sized catalog of the active product — about 13,000
data records. Mark automated production so that | could generate a 180-page complexly styled
catalog — using FileMaker Pro, AppleScript, and Quark — at the push of a button. We needed
to constantly produce multipage order forms with elaborate line listings and scannable bar-
codes. Mark automated these so that one button would trigger the form to build from scratch:
Quark firing up, new blank documents opening, text boxes being created and placed, text fly-
ing into the boxes, picture boxes being created, AppleScript running off and building barcode
images for each product, bringing them back, dropping them into the picture boxes, sizing
them to fit.... All this looked like magic to the IT guys that would drop by occasionally, none of
them Mac users, with no idea that an application like AppleScript existed that could make the
programs all “talk” to each other. It was magic to us, too: the documents were data driven, accu-
racy was better than it ever had been, and the automation was saving countless hours of typ-
ing, page layout, and proofreading every week.

New record formats were coming into being; sales needs and the documents supporting them
were changing often. | was pressed for time and got to work with Mark a lot. The thrill was that |
could call him and tell him what | needed and he’d never get nervous or show hesitation, and
he'd never say it couldn’t be done. There was always a way, and for him, always a good way. He
worked fast and methodically, kept me briefed, and generally delivered ahead of his target
date. | would send lists of fields, find and sort rules, and layout requirements. He would send
code. | wrote for his Web site, “There seems to be no limit to the complexity of the scripting and
automation jobs they are able to take on, and they do it with an energy, focus, speed, and level-
headed aplomb that are to be admired.” “They,” of course was all Mark himself, and | feel the
same twelve years later.

It's not surprising to me that Mark, early in his career, was a performing magician who got his
start with databases when he decided to computerize the inventory at Tannen’s, the New York
City magic supply mecca where he was working. | don’t mean this in the hokey, “Oh, this guy
works magic” sense; | mean that like a skilled performer he has brought to his work in these
intervening years a rigorous, practiced, polished, and intensely methodical approach. He has
developed a remarkable overview of the effects he wants to achieve. He has codified a highly
refined aesthetic and has devoted himself to the rigorous practice that it takes to express it.

I went to the Apple Store last night and happened to mention to a young clerk that my friend
was writing a developer guide to AppleScript. | was floored when he said, “Oh AppleScript —
nobody talks about that around here — | think there’s one guy that knows something about it
and was thinking of using it to automatically update his phone, but he only knew how to get it



to turn on and off.” Luckily, that's just ignorance, even if it's coming from an Apple employee:
AppleScript remains an unparalleled development tool for desktop automation. It's not easy,
and that’s why there are specialists like Mark Munro. Sometimes it’s hard to envision what it's
capable of because it takes effort to zoom out, like a movie camera craning overhead, to get a
real sense of what's possible to automate. Then building the solution can be daunting and
time-consuming. It takes an effort to stop what you're doing by rote, and to devote time to
changing direction. The resulting time savings and ease of operation can be thrilling.

I've heard a professional developer say, “What is good code? Good code is code that works.” |
don't think Mark would say that. There’s code that works and there’s good code that works.
It's not a fussy, perfectionist approach, either, just a sense of the intrinsic RIGHTness of an
approach. He abhors wasted time and repetition of effort and spends remarkable effort in
streamlining his FileMaker development practices and templates. This is to save time and
money for his clients and, | think, to keep himself moving forward. It's obvious to me why his
company’s motto is: “Write Track Media creates solutions that eliminate repetition and allow
our clients to focus on their highest potential.”

As a fledgling FileMaker developer, | have to admit that working with Mark over the years has
been an occasional wellspring of inferiority feelings: “Is this the standard? Can | ever be a devel-
oper who's worth his salt if I'm not as good as Mark?” Maybe | can relax a little. I've come to
believe that in all likelihood Mark’s unique: perhaps there’s no one as methodical and philo-
sophically rigorous at what he does. But now that he’s taking the time to codify his theories and
his method, maybe we can get a little closer.

Walker Stevenson
FileMaker Developer



Acknowledgments

riting this book was a tremendous effort and would not have been possible without
the support, contributions, and encouragement of many people.

First, | want to thank John Thorsen, Jr., for the development opportunities he provided me
many years ago. He is a constant source of advice, knowledge, and humor that would be diffi-
cult to find anywhere within a single human being. Also, thanks goes to Rob Vanderwerf for
reviewing the manuscript with a keen eye for technical consistency and accuracy. His feedback
led to many key improvements that greatly enhanced the quality of the material. To my friend,
Walker Stevenson, for his meticulous nature, a willingness to discuss technical details, and for
writing a foreword that makes it sound like | know what I'm doing. And to Aaron Black,
Katharine Dvorak, and everyone at Wiley for providing me with this opportunity and for all their
hard work.

Finally, a special thanks to all of my wonderful clients, especially those who have worked with
me as an extension of their staff for many years. They have presented me with one challenge

after another, constantly forcing me to push beyond my comfort zone. Many of the advanced
concepts in this book would not exist without them.






Introduction

R —

I n the early 1990s, | was working as a Computer Network and Telecommunications Manager

at the New York City headquarters of a company now known as Jack Morton Worldwide. In

addition to my other responsibilities, | was tasked with creating FileMaker Pro databases to
help manage the office’s information. At that time, FileMaker was still somewhat crude, and had
been since | began using it in the late 1980s.

During this time, | learned how to program HyperCard and was having a lot of fun building cus-
tom applications. Then | received a copy of the AppleScript Developer’s Toolkit and Scripting
Kit, an add-on piece of software for the Macintosh Operating System. | began converting the
HyperTalk scripts in my applications to AppleScript. Almost immediately HyperCard was rele-
gated to my archives in favor of AppleScript.

This was still a year or two before the Internet exploded in popularity. Finding documentation
and sample scripts was difficult, and very few applications supported scripting. These difficul-
ties led to many frustrating and yet ultimately rewarding, struggles to figure out how to suc-
cessfully automate one task after another. However, as support for scripting spread out into the
Mac OS and in third-party software, it became clear that workflow automation on a Mac was
going to be a huge phenomenon.

This was a driving factor for founding Write Track Media in 1994 to specialize in the develop-
ment of workflow automation solutions. Since that time, | have worked with many wonderful
clients in a variety of different industries. Many times since then, | have entertained the notion
of writing a book on AppleScript. Some of the techniques and ideas that | used daily, many cre-
ated out of the necessity of the moment, seemed good enough to share. Believing that good
ideas only become great when they are shared with others was a driving factor that led me to
avail myself of the opportunity to write this book.

I tried to structure this book to appeal to programmers of any skill level, including those who
have never programmed before. | start with the basics and gradually work toward more
advanced material to make this book beneficial to all. It is laced with advice, ideas, and tech-
niques gleaned from years of trial and error. Hopefully, you will find these useful and encourag-
ing in your future automation endeavors.

AppleScript is a wonderful language to know and is powerful enough to automate virtually any
task. It was a rewarding experience to focus on the language in a systematic fashion while writ-
ing this book. I hope you enjoy reading it as much as | have writing it.

Please let me know about issues you find in the book or offer suggestions for subjects you'd like
to see covered in a future edition. Visit www . writetrackmedia.com/contact/ to send
me an e-mail.



Getting the Most Out of This Book

The chapters in this book are organized into five parts. They are organized with the assumption
that a reader will read the book from cover to cover. The material starts with the basics and
gradually moves to more advanced material.

Part I, “AppleScript: The Power of Automation” includes an introduction and history of
AppleScript as well as discussions of workflow automation with AppleScript and script deploy-
ment options. It also includes a presentation of a comprehensive set of naming and usage
standards.

Part I, “Learning the AppleScript Language” begins with a chapter on AppleScript basics fol-
lowed by chapters detailing each class of data that can be manipulated with scripts. From there,
chapters discuss logical branching with i £-then statements, repeat loops, error containment
and management, and an in-depth look at how the standard scripting addition extends
AppleScript’s functionality.

Part Ill, “Using Scripts to Control Applications” reveals AppleScript’s capability to tap into the
functionality of standard, off-the-shelf software to create powerful multi-application workflows.
Also, the three “faceless” applications — Image Events, Database Events, and System Events —
included with the Macintosh operating system that provide additional functionality for
AppleScript are covered in detail.

Part IV, “Using Subroutines and Open-Ended Programming” contains chapters that discuss the
creation of subroutines, writing open-ended code, and an advanced discussion of using a hier-
archical method for dividing code into subroutines.

Part V, “Organizing Code into Modules and Libraries for Multi-Module Solutions” continues to
push into more advanced topics, discussing the development of complex AppleScript solutions
that are spread across more than one script file.

Parts IlI-V contain several versions of an Image Batch Processing script that evolves over five
chapters. Each successive version of the script is improved with concepts that are introduced in
that chapter.

All of the code in this book was created and tested in Mac OS X 10.6.

Using the Book’s Icons

There are four margin icons that are used throughout the book to provide additional informa-
tion, tips, warnings, or indications of where to find additional information.



NOTE

Notes highlight useful information that you should take into consideration.

TIP

Tips provide additional bits of advice that make particular features quicker or easier to use.

CAUTION

Cautions warn you of potential problems before you make a mistake.

CROSS-REF
Watch for the Cross-Ref icon to learn where in another chapter you can go to find more information on a particular
topic.

Accessing the Book’s Web Site

Several of the longer scripts presented in this book are available for download on Wiley’s com-
panion Web site. Visit www . wileydevreference. com for more information and to down-
load the script files.






AppleScript:
The Power of

Automation
——

In This Part

Chapter 1
Introduction to
AppleScript
Programming

Chapter 2
Workflow Automation
with AppleScript

Chapter 3

AppleScript Deployment
Options

Chapter 4

Making the Case for
Standardization







Introduction to
AppleScript Programming

ant command language that can communicate with and
control scriptable applications and scriptable features of
Macintosh Operating System (Mac OS) X.

Q ppleScript is an Open Scripting Architecture (OSA)-compli-

The OSA is a mechanism within the Mac OS that provides a library
of functions and allows inter-application communication and con-
trol by sending and receiving messages called Apple Events.

An Apple Event is a basic message exchange system of the OSA that
is used to send instructions to an application and optionally, send
back a result. Apple Events can be used to control inter-process
communication within an application, between applications on a
single computer, and between applications on a remote computer.
Figure 1.1 illustrates the path of an Apple Event message.

Since 1994, when System 7.5 was released, most Mac users have
been unaware that they send Apple Events every day. For example,
each time they double-click a document to open it, an Apple Event
is responsible for instructing the appropriate application to launch
and to open the file, as shown in Figure 1.2.

AppleScript provides an easy to learn, English-like language that
enables users to write scripts that send and receive Apple Events.
Each script acts like a new feature of the OS or an application.
Scripts can integrate third-party applications, creating custom solu-
tions that perform very specific tasks.

Because of its English-like syntax, even novice programmers can
build scripts to perform virtually any function. With pervasive sup-
port of AppleScript throughout the Mac OS and many third-party
applications, it is the ideal platform to create efficiency-rich, work-
flow automation solutions.

This amazing and award-winning technology provides a simple
and affordable way to automate repetitive computing tasks and
leave users free to focus their attention on more creative tasks.

In This Chapter

An introduction to
AppleScript

Locating AppleScript
applications and other
resources

Looking at AppleScript’s
resources and unique
characteristics

Who uses AppleScript
and what they automate

Looking at AppleScript’s
influence




= RDDIeSCrIDT: 1 ne rFoweror Automation .

Figure 1.1

The path of an Apple Event message sending a command to an application

Run the script

l
ki

l

Apple Event

v

Open Scripting Architecture (0SA)

A

The result

Open Scripting Framework

AppleScript.component

v i

‘ Apple Event Manager ‘

Application

Y

Command |—>| Apple Event Reply




e Lhabter 1:iINntrodauction to AppIiexcaripi roagrammina

Figure 1.2

The underpinnings of an Apple Event opening a document
@

T

User double-clicks

“Open”
Apple Event

Mac0S X Application

!

¥

A Brief History of AppleScript

AppleScript and its associated tools were conceived, designed, and implemented between
1989 and 1993. It was a long-term investment in fundamental infrastructure that matured over
a span of several years (see Figure 1.3).



e

LA

Figure 1.3

A timeline of the history of AppleScript

— 1987: HyperCard released

— 1989: AppleScript conceived

— 1991: System 7 released with AppleEvents Foundation

[~ 1991: AppleScript product begins

— 1992: AppleScript reaches beta

— 1993: AppleScript 1.0 Toolkit released

— 1994: System 7.5 released with AppleScript

— 1997: System 8.0 released with a Scriptable Finder

— 1998: AppleScript 1.3 released as a native PowerPC extension
— 1998: Seybold names AppleScript 1.3 “Technology of the Year”
— 2001: Mac 0S 10.0 released with AppleScript

— 2006: AppleScript is #17 on MacWorld’s
“30 Most Significant Mac Products”list

A

066l ——
S66L ——
000¢ ——
S00C —T—

Often considered a precursor to and inspiration for AppleScript, HyperCard was released in
1987. This software enabled novice programmers to rapidly create custom tools that would
carry out a set of specific processes. Featuring an easy-to-learn, English-like scripting language
called HyperTalk, it was easier to learn and use than other programming languages available at

that time.

AppleScript was officially conceived in 1989 as a research project by the Advanced Technology
Group (ATG) at Apple Computer and was code-named “Family Farm.” The research team was
led by Larry Tesler and included Mike Farr, Mitchell Gass, Mike Gough, Jed Harris, Al Hoffman,
Ruben Kleiman, Edmund Lai, and Frank Ludolph. Their goal was to create a new system-level
development environment for the Mac OS that would allow for inter-application communica-
tion and control and provide a user-level language. The original group was disbanded in mid-
1990 and new teams were assembled to design and implement the ideas first conceived.

The first step was the development of Apple Events, which is the inter-application communica-
tion foundation of AppleScript in the OS. Written in Pascal, like much of the Mac OS at the time,
this foundation needed to be in place before the development of AppleScript could begin. The
AppleScript project officially began in April 1991, just months before Mac OS 7, when the new
Apple Events foundation was released.



e Chapter 1: Introduction to AppleScript P

\

NOTE

The AppleScript project was code named “Gustav” after a team member’s dog.

In September 1992, AppleScript reached beta. However, in January 1993, the original team was
disbanded when several leaders left the project. It wasn't until April of that year that the
AppleScript 1.0 Developer’s Toolkit shipped as a stand-alone product that could be installed on
any Mac running System 7. In September, AppleScript version 1.1 was included as part of System
7.1.1 (System 7 Pro). In December, the first “end user” release — AppleScript 1.1 Developer’s
Toolkit and Scripting Kit — was released. Finally, in 1994, AppleScript was ready to revolutionize
how people use computers when it took its place as an official part of Macintosh System 7.5.

Since that time, AppleScript has slowly evolved into the invaluable tool that we know today. In
1997, the Macintosh Finder finally became scriptable, eliminating the need to use the Finder
scripting extension. When Macintosh OS 8.0 was released in July 1997, it included AppleScript
version 1.1.2 with many minor improvements.

NOTE
In 1997, Apple had plans to eliminate AppleScript in order to cut expenses but, thankfully, this plan was thwarted by
a campaign by loyal users of the technology.

In October 1998, AppleScript 1.3 was released, recompiled as a native PowerPC extension and
included Unicode support. In that year, Steve Jobs demonstrated AppleScript at Seybold, and
Macworld magazine named AppleScript 1.3 the “Technology of the Year.” In 2006, AppleScript
held position #17 on Macworld’s list of the 30 most significant Mac products ever.

NOTE

Read the entire history of AppleScript at www . cs . utexas.edu/~wcook/Drafts/2006/ashopl.
pdf.

A 1999 technology study by research firm GISTICS estimated that AppleScript produced more
than $100 million in annual savings for North American media firms. Today, Google returns
more than two million results when searching for the word “AppleScript.”

In Mac OS 10.6, released in 2009, AppleScript, Standard Additions, and all AppleScript-related
system applications, such as System Events, are now 64-bit capable.

The technology has flourished and now boasts a thriving and happily efficient user base.

Finding AppleScript Resources

AppleScript is made up of various elements located on each Mac computer. These elements
include applications, scripting additions, and components.



= AppleScript: 1 he Power of Automation___________

Applications

AppleScript developers use two applications: the AppleScript Editor and the Folder Actions
Setup application.

NOTE

Mac 0S 10.5 included a folder called “AppleScript” inside the /applications/ folder that contained three appli-
cations: Script Editor, AppleScript Utility, and Folder Action Setup. Mac 0S 10.6 doesn’t include this folder. The Script
Editor is now the “AppleScript Editor” and is in the /ut i 1it ies/ folder; the options accessible from the
AppleScript Utility are now in the Editor’s preference panel; and Folder Action Setup is now in the /System/
Library/CoreServices folder.

AppleScript Editor

Probably the most important application in the AppleScript toolbox is the AppleScript Editor,
which is located in the /Applications/Utilities/ folder. This application is used to cre-
ate, write, edit, compile, run, and save scripts. It contains many features that assist a developer
in learning the language, writing scripts, and exploring the command library of scriptable third-
party applications.

]

CROSS-REF

See Chapter 6 for more information about using the AppleScript Editor.

©

Folder Actions Setup

The Folder Actions Setup application, located in /System/Library/CoreServices/,is
used to assign script actions to folders. This enables a script to respond to various folder actions,
such as the arrival or removal of a file or folder, and perform a sequence of automated tasks on it.

NOTE

You can access the Folder Actions Setup application by dicking a folder while pressing the Ctrl key or by clicking the
right button on your mouse and selecting the Folder Actions Setup option from the contextual menu.

<

The Folder Actions Setup window, shown in Figure 1.4, lets you enable and disable folder
actions globally as well as add, show, and remove folders on a computer. Once you have added
a folder, you can attach one or more scripts to it.

CROSS-REF

See Chapter 16 for more information about using Folder Actions.

©



e ______________Chapter 1:introduction to AppleScript F

Figure 1.4

The Folder Actions Setup window

[ Filbes AT birt Sl ot

= frabis Feddier Amans
O Oy et b Om G

Scripting additions

J A scripting addition is used to extend the AppleScript language by providing a set of additional
commands. Scripting additions can be stored in several locations on a computer. Apple
includes several scripting additions in the OS and you can find additional third-party scripting
additions on the Internet.

CROSS-REF

See Chapter 16 for more information about installing and using scripting additions.

TIP
A set of sample scripts provided by Apple and installed as part of the Mac 0S 10.6 installation is located at
/System/Library/Scripts/.

Components

Components are files that provide basic functionality for AppleScript, Apple Events, and other
OSA-related languages. While the process of using or developing scripts does not require you
to be concerned with these components, they are provided in this book for informational pur-
poses only. Except when adding or removing additional language components, such as
JavaScript, you should never attempt to remove, modify, or be concerned with the where-
abouts of any of these components.

The Apple Event Manager provides an application programming interface (API) for sending and
receiving Apple Events, thereby providing support for the creation of scriptable applications.



It exists as part of the CoreSErvices. framework and is called the AE . framework. This is
important for those creating scriptable applications but not important for those writing scripts
with AppleScript.

Likewise, the OpenScripting. framework is a part of the Carbon . framework and is not
something AppleScript users and developers need to worry about. It defines data structures,
routines, and resources that support scripting components regardless of the language. It also
compiles, executes, loads, and stores scripts.

The AppleScript . component file, the default OSA scripting language component pro-
vided by Apple, enables a computer to use the AppleScript language. It is located at /System/
Library/Components.

Other OSA component files, such as the JavaScript . component, can be installed in
~/Library/Components for each user account that will use it. If your computer is connected
to an office network, you may need to contact your network administrator before installing addi-
tional OSA components.

Understanding the Unique Characteristics
of AppleScript

While old-fashioned macro recording utilities were quite useful in their time — they could sim-
ulate a series of literal keystrokes and mouse clicks, respectively — it was difficult to use them in
a dynamic and practical manner. With AppleScript you can not only automate a sequence of lit-
eral actions, but also you can create a dynamic script that includes logical branches, variable
content, and options for different behavior depending on specific conditions. This gives
AppleScript the power of a real programming language.

AppleScript possesses more unique characteristics that add to its appeal, such as its English-like
syntax, the fact that it is universally open-ended, its deep level of access into the Mac OS frame-
work and the frameworks of third-party applications, and its consistency between OS updates.

English-like syntax

One of the most unique characteristics of AppleScript is its English-like syntax. While some
detractors might say it is not even close to “natural spoken English,” most would agree that it is
certainly more like a spoken language than most other scripting and programming languages.
The difference in syntax can be illustrated with a few simple examples.

The following examples present a sort of Rosetta Stone of programming languages. The code in
each example performs exactly the same function: It builds a text-based list of numbers within a
range specified by two variables. At the end of each script, the resulting value will be a
sequence of numbers from 25 to 30 with a carriage return after each number.



