PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pattern Languages

Volume 5

Frank Buschmann,
Siemens, Munich, Germany

Kevlin Henney,
Curbralan, Bristol, UK

Douglas C. Schmidt,
Vanderbilt University, Tennessee, USA

John Wiley & Sons, Ltd

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pattern Languages

Frank Buschmann,
Siemens, Munich, Germany

Kevlin Henney,
Curbralan, Bristol, UK

Douglas C. Schmidt,
Vanderbilt University, Tennessee, USA

NNNNNNNNNNNN
4 [
2 ®
1807

S WILEY|:
s 2007 E

o r
nnnnnnnnnnnn

John Wiley & Sons, Ltd

Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on .wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the
Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or
faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of
their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.
This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.
Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-471-48648-0

Typeset in 10/13 Bookman-Light by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

For Anna, Bebéf, and Martina

Frank Buschmann

For Carolyn, Stefan, and Yannick

Kevlin Henney

For Lori, Bronson, Mom, and Dad

Douglas C. Schmidt

For John

Frank Buschmann, Kevlin Henney, Douglas C. Schmidt

+ Bebeé, July 3, 1999

Table of Contents

Foreword by Richard P. Gabriel
Foreword by Wayne Cool
About the Authors
About thisBook
Guide tothe Reader
o Beyond the Hype
0.1 Beginnings... o ..
0.2 A Story of Success... with Some Exceptions
0.3 Pattern Definitions and their Interpretations
0.4 Toward a Deeper Understanding of Patterns
PartI InsidePatternsc0 000
1 A Solution to a Problem and More
1.1 A Solution to a Problem
1.2 A Process and a Thing
1.3 Bestof Breed,
1.4 Forces: the Heart of Every Pattern
1.5 The Context: Part of a Pattern or Not?

1.6 Genericity

viii

1.7

1.8
1.9
1.10
1.11
1.12

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Part 11

4
4.1
4.2
4.3

4.4

Contents

A Diagram Says More than a Thousand Words...

orLess

Evocative Names Help Pattern Recollection

Patterns are Works in Progress

A Pattern Tells a Story and Initiates a Dialog

A Pattern Celebrates Human Intelligence
From a Problem-Solution Statement to a
Pattern

A Million Different Implementations

Does One Size Fit AllI?
Patterns and Frameworks
Patterns and Formalisms
A Million and One... and then Some ..

Notes on Pattern Form
Style and Substance
The Function of Form
Elements of Form
Details, Details
Aerial View
Different Pattern Forms
Style and Substance (Redux)

Between Patternsttt eeeeeenn

Pattern Islands?
Patterns Connect
A Design Experiment: Patterns as Islands
A Second Design Experiment: Interwoven
Patterns L.
Pattern Density

50
54
57
61
62

63

65
66
77
84
87

91
92
96
97
102
106
110
116

121
122
123

129
131

Contents

5

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5

7.1

7.2
7.3
7.4
7.5

7.6
7.7

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Pattern Complements
More than One Solution to a Problem
Patterns in Competition
Patterns in Cooperation
Patterns in Combination
Complementary: Competing, Completing,

Combining,

Pattern Compounds
Recurring Pattern Arrangements
From Elements to Compounds
From Complements to Compounds
Element or Compound?
Compound Analysis and Synthesis

Pattern Sequences
Patterns Tell Software Engineering Success
Stories ...
Pattern Stories
From Stories to Sequences
Sequences of Patterns
Pattern Compounds and Complements

Revisited
Returning to the Question of Context
Pattern Connections

Pattern Collections
Toward a Handbook
Organizing Pattern Collections
Ad Hoc Organization
Organization by Level
Organization by Domain
Organization by Partition
Organization by Intent

8.8
8.9
8.10
8.11
8.12

Part III

9
9.1
9.2

10

10.1
10.2
10.3
10.4
10.5

10.6

10.7
10.8

10.9

10.10

10.11
10.12

Contents

Organizing Pattern Collections (Reprise)
Problem Frames
Pattern Semiotics
Pattern Collections and Style
Toward Pattern Languages

Into Pattern Languages

Elements of Language
Designing with Patterns
From Pattern Stories and Sequences to Pattern

Languages

A Network of Patterns and More
A Network of Patterns
A Process and a Thing
Bestof Breed
Forces: the Heart of Every Pattern Language
Pattern Contexts Define Topology and
Architectural Style,
Patterns Form Vocabulary, Sequences Illustrate
Grammar
Genericity o
A Whole Language Says More than a Thousand
Diagrams i e
Domain-Oriented Names Help to Recall Pattern
Languages
A Pattern Language Initiates Dialog and Tells
Many Stories i o ..
Work in Progress
Pattern Languages Reward Creative Human
Intelligence

Contents

10.13

11

11.1
11.2
11.3
11.4
11.5
11.6

11.7

11.8

12

12.1
12.2
12.3
12.4
12.5

13

13.1
13.2
13.3

14

14.1
14.2
14.3
14.4
14.5

From a Pattern Network to a Pattern
Language

A Billion Different Implementations
One Size Does Not Fit All
Piecemeal Growth
Refactoring Not Excluded
One Pattern ata Time
Role-Based Pattern Integration
Pattern Languages and Reference

Architectures o ..
Pattern Languages and Product-Line
Architectures o ..
A Billion and One... and then Some

Notes on Pattern Language Form
Style and Substance
The Function of Form
The Elements of Form
Details, Details, Details
Style and Substance (Redux)

On Patterns versus Pattern Languages
Patterns and Pattern Languages: Similarities
Patterns and Pattern Languages: Differences
Patterns versus Pattern Languages?

From Patterns To People
Patterns are for People
In Support of Software Developers
In Support of Software Users
In Support of Pattern Authors
Technology for Humans

xi

295

297
298
298
303
306
309

315

317
322

325
326
326
328
334
346

xii

15

15.1
15.2
15.3
15.4

16

The Past, Presence, and Future of Patterns

The Past Three Years at a Glance

Where Patterns Are Now
Where Will Patterns Go Tomorrow?
A Brief Note about the Future of Patterns . ..

All Good Things...
Pattern Concept Summary
Referenced Patterns
Referencesiiiiieeeeneens
Indexof Patterns

Indexof Namest teeeeeeeennns

Contents

369
370
375
376
384

385

FO rewo l‘d by Richard P. Gabriel

TSoftware patterns have significantly changed the way we design...”is
how POSAS starts out—its preface, its self-explanation, maybe its
justification. But design: what happens when we design? Is design
about problems or about beauty? Does resolving forces while solving
a problem force beauty into the design? Or can beauty and ideal prob-
lem solving emerge only after a (pattern) language has been tooled
over the raw material? Someone once told me that any establishment
where the entrance is obvious is not worth visiting.

The Oxford English Dictionary, second edition, informs us about design
as follows:

1. A mental plan.

1.a. a plan or scheme conceived in the mind and intended for sub-
sequent execution;...the preliminary conception of an idea that is
to be carried into effect by action; a project;

In Guy Steele’s 1998 talk at OOPSLA, ‘Growing a Language,’ he said:

A design is a plan for how to build a thing. To design is to build a
thing in one’s mind but not yet in the real world—or, better yet, to
plan how the real thing can be built.

I once wrote:
Design is the thinking one does before building.
Carliss Baldwin and Kim B. Clark define design like this:

Designs are the instructions based on knowledge that turn
resources into things that people use and value.

—Between ‘Knowledge’ and ‘the Economy’: Notes on the Scientific Study of Designs

Each of these definitions and characterizations revolve around
ideas, plans, knowledge, problems, values and purposes, and hint
at a before-building time. Very rational-sounding and the way we
would like design to go—reliable, the trusty well-educated mind

Xiv

Foreword by Richard P. Gabriel

working things out: you can feel safe walking across the real thing
because it will not sway and fall down. But let’s think a little about

who we' is.

People have been ‘designing and building’ cities for millennia, using,
perhaps, tools and concepts like Christopher Alexander’s pattern
languages. Such artifacts are huge and hugely complex. It’s hard to
say where the mental plan is, because the imagining that might take
place is surely scattered across the years, decades, centuries, and
sometimes millennia it takes to fashion a proper city—a city like Ath-
ens, Rome, Berlin, London, Istanbul, or even New York or San Fran-
cisco and surely Boston. Thus the ‘we’ in the up-noted sentence’
must refer to a more recent set of us-es—namely software designers,
who, one could argue, have gravitated toward the more conservative
or possibly less realistic ideas of design reflected in the quotes
above. Even in my quote—where I was trying to leave room for the
interweaving of design, building, and reflection that cities, for exam-
ple, enjoy as part of their design journey—it is hard to not see the
before-building thrust into the forefront: the thinking one does before
building.

That design has a landscape of meanings and nuances brings to mind
a set of characterizations of design by Adrian Thompson at the Uni-
versity of Sussex. I call these characterizations design metaheuristics,
meaning they are approaches to how to think about design, like the
approach of using patterns and pattern languages. There are three
design metaheuristics. Here’s the first:

Inverse model is tractable: If there is a tractable ‘inverse model’
of the system, then there is a way of working out in advance a se-
quence of variations that brings about a desired set of objective
values.

Here a design is a plan, like a blueprint, and the inverse model is this:
once the thing to be designed is imagined, there is a way to work out
the blueprint or a plan for how to build the thing. This is the essential
up-front design situation, which works best when designing some-
thing that has been built at least once before, and typically dozens
or thousands of times. Alexander knows of this style of working: the
ideas behind patterns and pattern languages evolved from the no-
tion that people who built, for example, Swiss barns knew Swiss-barn

Foreword by Richard P. Gabriel XV

patterns and pattern languages naturally—as a result of seeing them
every day, working in them, and helping build them as children. In
this sense the inverse model is well established: the image in the
head is not unlike the barn next door, and the steps to build it are
known with perhaps only modest modification. A pattern language
(implicit or explicit) can guide the designer/builder along, and the lit-
tle adjustments that are always needed are just building as usual.
This leads to Thompson’s second design metaheuristic:

Inverse model is not tractable, but forward model is: In this
case, we can predict the influence of variations upon the objective
values, but the system is not tractably invertible so we cannot de-
rive in advance a sequence of variations to bring about a desired
set of objective values. This implies an iterative approach, where
variations carefully selected according to the forward model are
applied in sequence. This kind of iterative design-and-test is a
common component of traditional approaches.

Design a little, build a little, reflect a little—this is how I explain this
heuristic. It is the essence behind the agile methodologies, I think,
evolutionary design/programming, and Alexander’s ‘Fundamental
Process.” From the Agile Manifesto:

Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advan-
tage.

Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to [sic] the shorter timescale.

The best architectures, requirements, and designs emerge from
self-organizing teams.

—http:/ /agilemanifesto.org/principles.html

Alexander’s Fundamental Process’is how he describes designing and
building in The Nature of Order. In this massive four-volume book, he
talks about how centers—places of interest and attention in space—
are structured to create wholeness. Here are steps 1, 2, 4, 6, and 8:

1. At every step of the process—whether conceiving, designing,
making, maintaining, or repairing—we must always be concerned
with the whole within which we are making anything. We look at
this wholeness, absorb it, try to feel its deep structure.

xvi

Foreword by Richard P. Gabriel

2. We ask which kind of thing we can do next that will do the most
to give this wholeness the most positive increase of life.

4. As we work to enhance this new living center, we do it in such
a way as also to create or intensify (by the same action) the life of
some larger center.

6. We check to see if what we have done has truly increased the
life and feeling of the whole. If the feeling of the whole has not been
deepened by the step we have just taken, we wipe it out. Otherwise
we go on.

8. We stop altogether when there is no further step we can take
that intensifies the feeling of the whole.

Pattern languages are used like this, both by Alexander and by soft-
ware developers. Such usage reflects, merely, the realization that the
first design metaheuristic applies only to cases in which designs are
being (mostly) repeated. In such cases, there are often models that
can be used to simulate the design-a-little / build-a-little pattern the
‘Fundamental Process’ describes. Either there is literally a model—
physics and mathematics and science—that is the boss of the design,
and pretend designs can be tried out, or else we fool ourselves into
thinking that large steps in the fundamental process—releases of ver-
sion 1, then version 2, then version 3—are each actually full-blown
designs. We are fooled because we don’t want to zoom out to the larger
scale. Alexander’s ‘Fundamental Process’ is also a good description of
the various agile methodologies, although one would expect refactor-
ing to be more explicitly mentioned.

The book you either are about to read, are reading, or have finished
reading—the one in which this foreword is embedded—is about pat-
tern languages largely in this context. The thinking one does before
building can be described by steps 1, 2, & 4. In this context, design
really is a sort of problem solving. As Jim Coplien says:

Design is a process of intentional acts to the end of moving from
some conception of a problem to the reduction of that problem. A
problem is the difference between a current state and desired
state.

This seems to miss two aspects that seem (to some) central to de-
sign: beauty and newness. A very fine wine glass is both functional
and beautiful, it is made from an exquisite and exotic material, its

Foreword by Richard P. Gabriel xvii

shape—each type of wine has a preferred wineglass shape to concen-
trate the aroma best, to direct the wine to the best part of the mouth
for its flavor components, to prevent too much warming from the
hands—presents the wine to its best effect, while also pleasing the
eye with its elegance and line. Instead of ‘newness’ I almost wrote
‘novelty,” but ‘novelty’ implies an intellectual or academic newness
that misses the point. It isn’t that the design is an invention full of
brand new workings, it’s the pleasure and surprise of seeing some-
thing you've never seen before. I'm thinking about the Cord Model
810 automobile introduced in 1936:

The body design of the Cord 810 was the work of designer Gordon
M. Buehrig and his team of stylists that included young Vince
Gardner. The new car caused a sensation at the 1936 New York
Auto Show in November. The crowds around the 810 were so
dense, attendees stood on the bumpers of nearby cars to get a
look. Many orders were taken at the show...

—Wikipedia

People had never seen a car like this before—coffin-shaped nose, head-
lights hidden, exhaustpipes (one per cylinder) chromesnakes jutting
out the sides, the smooth curved shelf at the front—it even was
designed by stylists not designers. Notable about both its appearance,
engineering, and user experience were the recessed headlights and the
fact that the transmission came out the front of the engine, so that the
floor of the passenger compartment could be lower and flatter than was
usual at the time. Some say the design of the Cord 810 remains the
most distinctive of the twentieth century. In 1996, American Heritage
magazine proclaimed the Cord 810 sedan ‘The Single Most Beautiful
American Car.’

For example.

I find it hard to say that the Cord is the result of the reduction of a
problem to a final outcome: something else is happening. Rebecca
Rikner names this ‘something else”

Design is not about solving a problem. Design is about seeing the
beauty.

xviii

Foreword by Richard P. Gabriel

Many would guess I'm done with Thompson’s metaheuristics, but
there’s a third. And it’s the third which is the topic of his research.

Neither forward nor inverse models are tractable: There is nei-
ther a way of discerning which variations will give improvements
in the objective values, nor a way of predicting what will be the ef-
fects of variations upon the objective values. Without evolution all
is lost.

—Notes on Design Through Artificial Evolution: Opportunities and Algorithms

Evolution!

Thompson’s work includes the design of an analog circuit that can
discriminate between 1kHz and 10kHz square waves using a field-
programmable gate array designed using a genetic algorithm.! The
result is described as ‘probably the most bizarre, mysterious, and
unconventional unconstrained evolved circuit yet reported,’ in large
part because the researchers were unable, in the end, to understand
how the circuit works. It’s not important to understand the details of
the following remarks from their paper—just take a look at the expres-
sions of incredulity:

Yet somehow, within 200ns of the end of the pulse, the circuit
‘knows’ how long it was, despite being completely inactive during
it.

This is hard to believe, so we have reinforced this finding through
many separate types of observation, and all agree that the circuit
is inactive during the pulse.

Research in genetic algorithms, genetic programming, neuro-evolution,
neural nets, and statistical/aleatoric methods all demonstrate sur-
prising results—some of them displaying a puzzling illusion of design,
like the antenna designed and tested by NASA and designed by artifi-
cial evolution. The size of an infant’s hand, the elements bend off in a
crazy cryptosymmetry like a small black bush half-frozen after a frost.
It doesn’t look like something a person would design, but it has better
antenna-crucial characteristics in some ways, and so it is a good
design—in terms of reducing a problem.

1. Adrian Thompson et al, Explorations in Design Space: Unconventional Electronics
Design Through Artificial Evolution.

Foreword by Richard P. Gabriel xix

But do we feel that it is a good design? What do we make of this evo-
lution stuff? How does artificial evolution work? In short, a population
is subjected to artificial reproduction in which some characteristics
from one parent are combined with others from another. The resulting
characteristics are subjected to a small amount of random mutation,
and the resulting population—which can include the original parents
in some algorithms—is tested for fitness against a fitness function.
Assuming the characteristics are related to aspects of design, this
reduces to taking some design elements from one not-so-bad solution
and combining them with design elements from another not-so-bad
solution, making some small changes, and seeing how that goes.
Aside from the random part, this doesn’t sound so random.

If you take it from me that some of the things ‘designed’ this way have
interesting characteristics, we need to ask whether this approach is a
form of design. Some people would say that without a human design-
er, there can be no design, that the ‘intentional’ in Coplien’s charac-
terization and the ‘mind’ in the OED definition are essential features.
Where are the ‘instructions based on knowledge™ If Pierre Menard?

2. Pierre Menard, Author of The Quixote, by Jorge Luis Borges. In this story, a twentieth
century writer (Menard) puts himself in a frame of mind to rewrite, word for word, part
of Cervantes’ Don Quixote de la Mancha, but not as a transcription, but as a coinci-
dence. Enjoy:

It is a revelation to compare Menard’s Don Quixote with Cervantes’. The latter, for
example, wrote (part one, chapter nine):

...truth, whose mother is history, rival of time, depository of deeds, witness of
the past, exemplar and adviser to the present, and the future’s counselor.

Written in the seventeenth century, written by the ‘lay genius’ Cervantes, this
enumeration is a mere rhetorical praise of history.

Menard, on the other hand, writes:

....truth, whose mother is history, rival of time, depository of deeds, witness
of the past, exemplar and adviser to the present, and the future’s counselor.

History, the mother of truth: the idea is astounding. Menard, a contemporary of
William James, does not define history as an inquiry into reality but as its origin.
Historical truth, for him, is not what has happened, it is what we judge to have
happened. The final phrases—exemplar and adviser to the present, and the
future’s counselor—are brazenly pragmatic.

The contrast in style is also vivid. The archaic style of Menard—quite foreign, after
all—suffers from a certain affectation. Not so that of his forerunner, who handles
with ease the current Spanish of his time.

Foreword by Richard P. Gabriel

were to dream up the FPGA tone discriminator or the weird antenna,
such doubters might declare the result a design—or perhaps further,
human-sensible explanations of the design are required to make that
leap.

This brings to my mind the idea of canalization, described like this:

A developmental outcome is canalized when the developmental
process is bound to produce a particular end-state despite envi-
ronmental fluctuations both in the development’s initial state and
during the course of development.

—(adapted from) Andre Ariew, Innateness is Canalization:
In Defense of a Developmental Account of Innateness

A thing produced is canalized when once it falls into a tributary of a riv-
er, by the process of its production it ends up in the river. ‘Canalized’
comes from the word ‘canal—once in the canal, you cannot escape.
Strange attractors in complexity science are canalizations. Artificial
evolution doesn’t care whether a design—or at least a thing it produc-
es—is beautiful, elegant, understandable, parsimonious, maintain-
able, extendable, sleek, slick, simple, superfluous, silly, or human. All
it cares about is that it fits what the fitness function dictates. The
design is not canalized by those things—those human things—as just
about all human designs are and most likely must be.

Facing it in another direction, the design of, say, the antenna looks
strange because it is not what a person would ever design. We are
incapable of exploring a full design space, only those parts that look
pretty to us.

This book is about design viewed through the lens of patterns and
pattern languages. As you read it, permit your mind to drift closer to
ideas of design and perhaps later on, further away. Permit yourself to
wonder about design in all its glories and incarnations. The three
design metaheuristics might very well represent points on a coherent
continuum, and if they do, there also is a point where the human
becomes non-human or, maybe worse, post-human.

Foreword by Richard P. Gabriel xxi

Pattern languages can encompass lots of design space. They are part
of our software design and construction toolboxes. They work by help-
ing people design better. Reflection on good design is how pattern lan-
guages are written down. Design, design, design, design.

Richard P. Gabriel

FO rewo l‘d by Wayne Cool

Way back I fell in with a bunch hot on the trail of a revolution in pro-
gramming, hefting on their backs the unwieldy and orthodoxless
ideas of a mad architect himself bent on revving the future by reviving
the past in the splendor of its design sense! but not its design [Ale79].
This cool group holed up in retreats and self-concocted workshops,
never in a mainstream meet-up but in contrast to official miracles, in
a far-off locale, some backwater or Podunk which although unverifi-
able is visitable.? Unlike the madman who crowed ‘beauty beauty
beauty,’ this crew worked the nuts, oiled the bolts, screwed together
a practice and a program, a practicality and a precision straight-
aimed at the practitioner and around the corner from theory.

Along the way I hopped from PLoP to PLoP, café to bar, beer to Star-
bucks; I was there when Beck proclaimed, when the workshops
wound up, when the rainstorm first came up on the parquet Allerton
floor, when the sun rose at Irsee, when the trail rides ended and the
dust settled in Wickenberg; [was there when the books were written,
reviewed, printed, and praised. Through all this I watched the interest
grow in design and the structure of man-made things, in the strength
of the written word aimed at the creation of a built-up world made of
ideas and abstractions but felt like the built world of wood and shel-
lac, stone and metal rods.

And this is what I want to come to: the realm of software patterns
converts the world of surfaces—a world where mechanism is hidden
beneath impenetrable covers—to one of exposed innards and plain
working; the hidden becomes the object of a craftsmanship that can
be defined as the desire to do something well—for its own sake, for no
reward, for the pride of skill applied with discernment and in reflec-
tion, taking a long time and going deeply into it. For those who build

1. Or ‘scents,’ as the agile would proclaim.

2. Apologies to Bill Knott.

XXiv

Foreword by Wayne Cool

this way, it matters little that the craft is buried under a user interface—
because one day someone must peek underneath and see. The sur-
faces matter but they don’t hide.

Art. Craft. Engineering. Science. These are the swirling muses of
design patterns. Art and science are stories; craft and engineering are
actions.

Craft is midway between art and science; art and craft stand over
against engineering and science. Art is the unique example, the first
thing, the story as artifact condensing out of talent and desire. Craft
is reliable production of quality. A craftsman® might be disappointed
but rarely fails. A work of craft is the product of a person and materi-
als. Engineering is reliable and efficient production of things for the
use and convenience of people. Science is a process of making a story
that can be used for engineering. A book called ‘The Art of X’ is about
the mystery of the rare individual who can make an X. ‘The Craft of
X’is about the sweat and training endured by those who make Xs one
at a time. ‘The Engineering of X’ is about discipline and long days
planning and making Xs for institutional customers. ‘The Science of
X’ is a maths book.

But the roles of science and craft have been misdiagnosed. Most be-
lieve (deeply) that science precedes, as they believe it must, craft and
engineering; that building requires abstract knowing. As in: to design
a steam engine you need a (correct) theory of thermodynamics. But
when the steam engine was developed, scientists believed the ‘caloric
theory:’ that there is a ‘subtle fluid’ called caloric that is the substance
of heat. The quantity of this substance is fixed in the universe; it flows
from warmer bodies to colder. Good story. The caloric theory explained
a lot, but the mechanics who built the first steam engines didn’t know
the theory or didn’t care about it. Working with boilers, they noticed
relations between volume, pressure, and temperature and they built
steam engines. Maybe the scientists even used observations of steam
engines to come up with ‘modern’ thermodynamics.

3. Today I choose the pretty word.

Foreword by Wayne Cool XXV

Craftsmen know the ways of the substances they use. They watch.
Perception and systematic thinking combine to formulate under-
standing. A well-developed craft gives rise to technological develop-
ments. And science. Sure: there are feedback loops between science
and engineering, but neither is queen—and hands-on dominates sit-
and-think.

This is about building, and all building requires planning and execu-
tion. Planning is the thinking one does before building. Execution is
understanding the plan and producing something from it. Since the
early twentieth century management science has pushed for the sep-
aration of planning from execution. Frederick Winslow Taylor said it
with art and poetry this way:

All possible brain work should be removed from the shop and cen-
tered in the planning or lay-out department.

—Principles of Scientific Management

Sweet.

Planning and execution merge in art but stand wide apart in engi-
neering; somewhere in between for craft. Science is in the realm of
thought and ideas.

Separation of planning from execution is not about efficiency. Not
about getting the most value per hour. Maybe it will; maybe it won’t.
Planning takes thinking; thinking costs money. If you can think a little,
build a lot, you can make money. Thinking while executing is replaced
by process; education is replaced by training—the way Dancing Links
and Algorithm X% can solve Sudoku. With Dancing Links and Algo-
rithm X, Sudoku needs a computer, not a person. Separating planning
from execution is about cost.

And this is not about quality. The best quality cars are not built on
blind robotic assembly lines. Cost.

If cost is pressure toward engineering, patterns is the push-back toward
craft and art.

4. Dancing Links is a technique suggested by Donald Knuth to efficiently implement
Algorithm X, a recursive, nondeterministic, depth-first, brute-force algorithm that
finds all solutions to the exact cover problem.

Foreword by Wayne Cool

Patterns. Craftsmanship: we think of it arising from the texture of the
built world. A world where quality and attention to detail is visible on
the surface of materials, in the gaps between things, in methods of
joining without friction but with shape and convolution. A world where
talent sits besides knowledge and intelligence. Read this description of
the problem of making felloes—sections of rim on a wooden carriage
wheel—in The Wheelwright’s Shop by George Sturt:®

Yet it is in vain to go into details at this point; for when the simple
apparatus had all been gotten together for one simple-looking pro-
cess, a never-ending series of variations was introduced by the
material. What though two felloes might seem much alike when
finished? It was the wheelwright himself who had to make them
so. He it was who hewed out that resemblance from quite dissim-
ilar blocks, for no two felloe-blocks were ever alike. Knots here,
shakes® there, rind—galls7, waney8 edges, thicknesses, thinnesses,
were for ever affording new chances or forbidding previous solu-
tions, whereby a fresh problem confronted the workman'’s ingenu-
ity every few minutes. He had no band-saw (as now [1923]) to
drive, with ruthless unintelligence, through every resistance. The
timber was far from being prey, a helpless victim, to a machine.
Rather it would lend its own special virtues to the man who knew
how to humour it.

—The Wheelwright’s Shop

You can feel the wood as equal partner to craftsman.

The work of patterns is the work of people who have systematic encoun-
ters with code, going deeply into it, dwelling for long periods of time on
the tasks of design and coding to get them right, people who don’t be-
lieve planning can be separated from execution. People who work this
way are having the sort of encounter that gives rise to science. This is
not mere trafficking in abstractions; it is thinking. Patterns don’t push

5. First published in 1923.
6. A crack in timber caused by wind or frost.

7. A damage the tree received when young, so that the bark or rind grows in the inner
substance of the tree.

8. A sharp or uneven edge on a board that is cut from a log not perfectly squared, or
that is made in the process of squaring.

Foreword by Wayne Cool xxvii

toward art and craft but are the tools of people who do. To be resisted
is the automation of patterns which is the separation of planning and
execution.

Computer scientists stand at the chalkboard—write and erase, squint
and stare, remark and declaim. Patterns people, like mechanics, bend
at the waist and peer into the code, their arms are drenched in code
up to the elbows. It’s what they work on: knots here, shakes there,
rind-galls, waney edges, thicknesses, thinnesses forever affording
new chances or forbidding previous solutions. They see programming
almost as manual work—muscled arms, sleeves rolled tight against
biceps, thought bright behind the eye linking mind and hand.

*ee

I was there when the patterns community started. I sat the hillside; I
huddled in the redwoods; I ran the beach; I hiked Mt Hood; I kayaked,
did the ropes course, gazed on the Sun Singer at sunset; I sweated in
the sauna; I rode the big horse, Bigfoot; I sang with the cowboy over
steaks and corn. But I didn’t add a single idea, not even one sentence,
nor one dot of punctuation to what the patterns people thought, wrote,
and built. I'll bet, though, you know exactly what I think about it.

Wayne Cool, Venice Beach

About the Authors

Frank Buschmann

Frank Buschmann is Senior Principal Engineer at Siemens Corporate
Technology in Munich, Germany. His research interests include
object technology, software architecture, product-lines, model-driven
software development, and patterns. He has published widely in all
these areas, most visibly in his co-authorship of three POSA volumes
[POSA1] [POSA2] [POSA4]. Frank was a member of the ANSI C++
standardization committee X3J16 from 1992 to 1996, initiated the
first EuroPLoP conference in 1996, co-edited several books on pat-
terns [PLoPD3] [SFHBSO06], and serves as an editor of the Wiley Series
in Software Design Patterns. In his development work at Siemens,
Frank has led architecture and implementation efforts for several
large-scale industrial software projects, including business informa-
tion, industrial automation, and telecommunication systems.

When not at work Frank spends most of his time enjoying life with his
wife Martina and daughter Anna, having fun riding his horse Edd,i,
watching the time go by in Munich beer gardens, getting excited when
watching his favorite soccer team, Borussia Dortmund, dreaming
when listening to a performance at the Munich opera, and relaxing
with rare Scotch single malts before bedtime.

Kevlin Henney

Kevlin Henney is an independent consultant based in Bristol, UK. His
work involves teaching, mentoring, and practicing across his areas of
interest, which include programming languages and techniques, soft-
ware architecture, patterns, and agile development. His clients range
from global firms to smaller startups, involved in the worlds of sys-
tems software, telecommunications, embedded systems, middleware
development, business information, and finance.

XXX About the Authors

Kevlin is a regular speaker at software conferences, and has also been
involved with the organization of many conferences, including Eu-
roPLoP. He has participated in the C++ standardization process,
through the BSI and ISO, as well other language standardization
efforts. Kevlin is also known for his writing, which has included a
POSA volume [POSA4], conference papers, and regular (and irregular)
columns for many publications, including C++ Report, C/C++ Users
Journal, Java Report, JavaSpektrum, Application Development Advi-
sor, The Register, EXE, and Overload.

In what passes for spare time, Kevlin enjoys spending time with Car-
olyn, his wife, and Stefan and Yannick, their two sons. This time takes
in Lego, toy fixing, reading, and the odd beer or glass of wine.

Douglas C. Schmidt

Doug Schmidt is a Professor of Computer Science and Associate Chair
of the Computer Science and Engineering program at Vanderbilt Uni-
versity, Nashville, Tennessee, USA. His research focuses on patterns
and pattern languages, optimization principles, and empirical analy-
sis of techniques that facilitate the development of quality of service
(QoS)-enabled component middleware and model-driven engineering
tools that support distributed real-time and embedded systems.

Doug is an internationally-recognized expert on patterns, object-
oriented frameworks, real-time middleware, modeling tools, and open-
source development. He has published over 300 papers in top technical
journals and conferences, has co-authored books on patterns [POSA2]
[POSA4] and C++ network programming [SHO2] [SHO3], and has also
co-edited several popular books on patterns [PLoPD1] and frame-
works [FJS99a] [FJS99b]. In addition to his academic research, Doug
has led the development of ACE, TAO, CIAO, and CoSMIC, which are
widely used open-source middleware frameworks and model-driven
engineering tools that contain a rich set of reusable components im-
plemented using the patterns presented in this book.

In his rare spare time Doug enjoys spending time with his wife Lori
and their son Bronson, as well as weight-lifting, guitar playing, debat-
ing world history and politics, and driving Chevy Corvettes.

About this Book

Software patterns have significantly changed the way we design, imple-
ment, and think about computing systems. Patterns provide us with
a vocabulary to express architectural visions, as well as examples of
representative designs and detailed implementations that are clear
and to the point. Presenting pieces of software in terms of their con-
stituent patterns also allows us to communicate more effectively, with
fewer words and less ambiguity.

Since the mid-1990s many software systems, including major parts
of the Java and C# programming languages and libraries, were devel-
oped with the help of patterns. Sometimes these patterns were applied
selectively to address specific challenges and problems. At other times
they were used holistically to support the construction of software
systems from the definition of their baseline architectures to the real-
ization of their fine-grained details. Today the use of patterns has be-
come a valuable commodity for software professionals.

Over the past decade and a half, a large body of literature has been
created to document known patterns in a wide range of areas related
to software development, including organization and process, appli-
cation and technical domains, and best programming practices. This
literature provides concrete guidance for practicing software engi-
neers and increasingly influences the education of students. Each
year new books and conference proceedings are published with yet
more patterns, increasing the depth and breadth of software develop-
ment knowledge codified in pattern form.

In the same way, the knowledge of, and experience with, applying pat-
terns has also grown steadily, along with our knowledge about the
pattern concept itself: its inherent properties, different flavors, and
relationships with other technologies. In contrast to the ever-growing
number of documented and refactored concrete patterns, however,
publications about patterns and the pattern concept have been

Xxxii

About this Book

updated only sparsely and in selected areas since the mid-1990s,
despite the enormous increase of conceptual knowledge in the soft-
ware patterns community. The introduction to software patterns in A
System of Patterns [POSA1l] and Design Patterns [GoF95], and the
white paper on Software Patterns [Cope96], remain the most relevant
sources about the pattern concept. Furthermore, only relatively recently
have publications started to discuss and document pattern sequences
explicitly [CoHa04] [PCWO05] [HenOSb].

To summarize the current state of affairs, no complete and up-to-
date work on the pattern concept is available. Moreover, knowledge
of the latest advances in the conceptual foundations of patterns
remains locked in the heads of a few experts and thought leaders in
the patterns community. Mining this knowledge and documenting it
for consumption by the broader software development community is
the intention of this book, On Patterns and Pattern Languages, which
is the fifth and final volume in the Pattern-Oriented Software Architec-
ture series.

In this book we present, discuss, contrast, and relate the many known
flavors and applications of the pattern concept: stand-alone patterns,
pattern complements, pattern compounds, pattern stories, pattern
sequences, and—Ilast but not least—pattern languages. For each con-
cept flavor we investigate its fundamental and advanced properties,
and explore insights that are well-accepted by the pattern community,
as well as perspectives that are still the subject of discussion and dis-
pute. We also discuss how patterns support and interact with other
technologies commonly used in software development. In a nutshell,
we provide an overview of the current state of knowledge and practice
in software patterns.

Note, however, that while we are general and broad regarding the
elaboration and discussion of the pattern concept itself, the concrete
examples we use to illustrate or motivate different aspects of the con-
cept focus mostly on software design patterns—as opposed to other
types of patterns such as organizational patterns, configuration-
management patterns, and patterns for specific application domains.
The reason for this (self-)restriction is twofold. First, the majority of
all documented software patterns are software design patterns, so we
have a wealth of material for our examples. Second, the largest group
of software pattern users are architects and developers—thus our

About this Book xxxiii

focus on software design patterns allows us to explain the ‘theory’
behind patterns using practical examples with which this group is
most familiar.

Intended Audience

The main audience of the book are software professionals interested
in the conceptual foundations of patterns. Our primary goal is to help
such professionals broaden, deepen, and complete their knowledge
and understanding of the pattern concept so that they know what and
how patterns can contribute to their projects. Our other goals are to
help them avoid common misconceptions about patterns, and apply
concrete patterns more effectively in their daily software development
work.

This book is also suitable for undergraduate or graduate students
who have a solid grasp of software engineering, programming lan-
guages, runtime environments, and tools. For this audience, the book
can help them to learn more about what patterns are and how they
can help with the design and implementation of high-quality software.

Structure and Content

The book is structured into three main parts, which are surrounded
and supported by several smaller chapters that motivate and com-
plete its vision and content.

Chapter O, Beyond the Hype, reflects on the original definitions of the
pattern concept and discusses how these definitions are received and
understood by the software community. Our analysis suggests that
some adjustments and enhancements are useful to avoid misconcep-
tions when understanding patterns, and to help prevent the misap-
plication of patterns in software projects. This introductory chapter
provides the foundation for the three main parts of the book, which
elaborate and discuss these adjustments and enhancements in
greater detail to provide a more complete and consistent picture of
the pattern concept.

XXXiv

About this Book

Part I, Inside Patterns, reflects on the use of stand-alone patterns, and
presents and discusses the insights into patterns we have collectively
gained over the last decade. These insights complement existing pat-
tern definitions, helping us to understand patterns at a deeper level.

Part II, Between Patterns, moves outside individual patterns to explore
the relationships between patterns: sometimes a set of patterns repre-
sent alternatives to one another, sometimes they are adjuncts to one
another, and sometimes they are bound together as a tightly-knit
group. Beyond the common, passive notion of a collection, this part of
the book also considers how patterns can be organized as a sequence,
with patterns applied one after another in a narrative flow, thereby
adding an active voice to the use of patterns in the design process.

Part IlI, Into Pattern Languages, builds on the concepts and conclu-
sions of the first two parts by introducing pattern languages. Compared
with individual patterns and pattern sequences, pattern languages
provide more holistic support for using patterns in the design and im-
plementation of software for specific technical or application domains.
They achieve this goal by enlisting multiple patterns for each problem
that arises in their respective domains, weaving them together to define
a generative and domain-specific software development process.

Chapter 14, From Patterns To People, picks up the discussion about
the concept of patterns from the first three parts of the book, to con-
clude that despite all technology within patterns and the support they
provide for other software technologies, the prime audience of pat-
terns is people.

Chapter 15, The Past, Presence, and Future of Patterns, revisits our
2004 forecast on where we expected patterns to go that was published
in the third volume of the Pattern-Oriented Software Architecture series.
We discuss the directions that patterns have actually taken during the
past three years and analyze where patterns and the patterns commu-
nity are now. Based on this retrospection, we revise our vision about
future research and the application of patterns and pattern languages.

This book is the last volume we plan to publish within the POSA se-
ries—at least for now. Chapter 16, All Good Things..., therefore wraps
up and concludes our more than fifteen years of work on, and experi-
ence with, patterns, and examines the five volumes of the POSA series
that we have written during this time.

About this Book

XXXV

The book ends with a summary of all the pattern concepts we discuss,
a chapter with thumbnail descriptions of all the patterns we reference
in the book, an extensive list of references to work in the field, a pat-
tern index, a general subject index, and an index of names that lists
everyone who helped us shape this book.

There are undoubtedly properties and aspects of the pattern concept
that we have omitted, or which will emerge over time with even greater
understanding of patterns and their use in practical software develop-
ment. If you have comments, constructive criticism, or suggestions for
improving the style and content of this book, please send them to us
via e-mail to siemens-patterns@cs.uiuc.edu. Guidelines for subscrip-
tion can be found on the patterns home page at http://hillside.net/
patterns/. This link also provides an important source of information
on many aspects of patterns, such as available and forthcoming books,
conferences on patterns, papers on patterns, and so on.

Acknowledgments

It is a pleasure for us to thank the many people who supported us in
creating this book, either by sharing their knowledge with us or by
reviewing earlier drafts of its parts and providing useful feedback.

First and foremost, we want to thank John Vlissides, to whom we also
dedicate this book. John was one of the most brilliant minds in the soft-
ware patterns community—as ground-breaking thought leader and co-
author of the legendary and seminal Gang-of-Four book [GoF95], and
as ‘discoverer’ and mentor of many now well-known and world-class
pattern experts. The inspirations and foundations from his work have
significantly influenced and helped shape the pattern concept we elab-
orate and discuss in this book.

Champion review honors go to Wayne Cool, Richard P. Gabriel, Michael
Kircher, James Noble, and Linda Rising, who reviewed all our material
in depth, focusing on its correctness, completeness, consistency, and
quality. Their feedback significantly increased the quality of material
in the book. Wayne Cool also contributed many ideas and thoughts
that we explore in depth in the book.

In addition, we presented parts of the material in the book at four Eu-
roPLoP pattern conferences and also to several pattern experts. Alan
O’Callaghan, Lise Hvatum, Allan Kelly, Doug Lea, Klaus Marquardt,

XXXVi

About this Book

Tim O’Reilly, Michael Stal, Simon St. Laurent, Steve Vinoski, Markus
Volter, Uwe Zdun, and Liping Zhao provided us with extensive feedback,
which led to many minor and also some major revisions of various
aspects of the pattern concept and their presentation.

Many thanks also go to Mai Skou Nielsen, who permitted us to use
photos from her collection in the book.

Special thanks go to Lothar Borrmann and Reinhold Achatz for their
managerial support and backing at the software engineering labs of
Corporate Technology of Siemens AG, Munich, Germany.

Very special thanks go to our editor, Sally Tickner, our former editor
Gaynor Redvers-Mutton, and everyone else at John Wiley & Sons who
made it possible to publish this book. On a sunny evening at Eu-
roPLoP 2002, Gaynor convinced us to write this POSA volume, and
she also accompanied the first two years of its creation. Sally, in turn,
had an enormous amount of patience with us during the two addi-
tional and unplanned years we spent completing the manuscript.
Very special thanks also go to Steve Rickaby, of WordMongers Ltd,
our copy editor, for enhancing our written material. Steve accompa-
nied all five volumes of the POSA series with his advice and support.

Last, but not least, we thank our families for their patience and sup-
port during the writing of this book!

Guide to the Reader

The White Rabbit put on his spectacles.
“Where shall I begin, please your Majesty?” he asked.

“Begin at the beginning,” the King said, very gravely,
“and go on till you come to the end: then stop.”

Lewis Carroll, Alice’s Adventures in Wonderland

This book is structured and written so that the most convenient way
to read it is from cover to cover. If you know where you want to go,
however, you can choose your own route through the book. In this

case, the following hints can help you decide which topics to focus on
and the order in which to read them.

xxxviii Guide to the Reader

A Short Story about Patterns

This book provides an in-depth exploration of the pattern concept.
Starting with a popular—yet brief and incomplete—pattern definition,
we first motivate, examine, and develop the inherent properties of
stand-alone patterns. A solid understanding of what a stand-alone
pattern is—and what it is not—helps when applying individual pat-
terns effectively in software development.

We next explore the space ‘between’ patterns. Patterns are fond of
company and can connect to one another through a variety of rela-
tionships: they can form alternatives to one another, or natural com-
plements, or define a specific arrangement that is applied wholesale.
Patterns can also line up in specific sequences that, when applied,
generate and inform the architectures of concrete software systems.
Knowing about and understanding the multifaceted relationships
that can exist between patterns supports the effective use of a set of
patterns in software development.

Finally, we enrich the concept of stand-alone patterns with the various
forms of relationships between patterns, to elaborate the notion of pat-
tern languages. Pattern languages weave a set of patterns together to
define a generative software development process for designing soft-
ware for specific applications or technical domain. Pattern languages
realize the vision and goal of pattern-based software development that
we had in mind when we started the Pattern-Oriented Software Archi-
tecture series over ten years ago.

All the concepts we explore and develop build on one another. The
various types of relationships between patterns take advantage of the
properties of stand-alone patterns. Pattern languages further build on
and take advantage of the relationships between patterns. Starting
with an informal and intuitive characterization of what a pattern is,
we progressively mine and elaborate the different properties and fac-
ets of the pattern concept, until we have developed a more complete
and consistent picture of what patterns are, what they are not, how
they can support you when developing software, and how they relate
to other software technologies and techniques.

