

Java®

7th Edition

by Barry Burd, PhD

Java® For Dummies®, 7th Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Java is a registered trademark of Oracle America, Inc. Android is a registered trademark of Google, Inc.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017932837

ISBN: 978-1-119-23555-2; 978-1-119-23558-3 (ebk); 978-1-119-23557-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies#_blank
http://booksupport.wiley.com
http://www.wiley.com
https://hub.wiley.com/community/support/dummies

Contents at a Glance
Introduction . 1

Part 1: Getting Started with Java . 9
CHAPTER 1: All about Java . 11
CHAPTER 2: All about Software . 25
CHAPTER 3: Using the Basic Building Blocks . 43

Part 2: Writing Your Own Java Programs . 65
CHAPTER 4: Making the Most of Variables and Their Values . 67
CHAPTER 5: Controlling Program Flow with Decision-Making Statements 105
CHAPTER 6: Controlling Program Flow with Loops . 139

Part 3: Working with the Big Picture:
Object-Oriented Programming . 159
CHAPTER 7: Thinking in Terms of Classes and Objects . 161
CHAPTER 8: Saving Time and Money: Reusing Existing Code 197
CHAPTER 9: Constructing New Objects . 231

Part 4: Smart Java Techniques . 257
CHAPTER 10: Putting Variables and Methods Where They Belong 259
CHAPTER 11: Using Arrays to Juggle Values . 293
CHAPTER 12: Using Collections and Streams (When Arrays Aren’t

Good Enough) . 321
CHAPTER 13: Looking Good When Things Take Unexpected Turns 351
CHAPTER 14: Sharing Names among the Parts of a Java Program 383
CHAPTER 15: Fancy Reference Types . 409
CHAPTER 16:	Responding	to	Keystrokes	and	Mouse Clicks . 427
CHAPTER 17: Using Java Database Connectivity . 445

Part 5: The Part of Tens . 455
CHAPTER 18: Ten Ways to Avoid Mistakes . 457
CHAPTER 19: Ten Websites for Java . 463

Index . 465

Table of Contents v

Table of Contents
INTRODUCTION . 1

How to Use This Book .1
Conventions Used in This Book .2
What You Don’t Have to Read .2
Foolish Assumptions .3
How This Book Is Organized .4

Part 1: Getting Started with Java .4
Part 2: Writing Your Own Java Program . 4
Part 3: Working with the Big Picture: Object-Oriented
Programming . 5
Part 4: Smart Java Techniques .5
Part 5: The Part of Tens .5

Icons Used in This Book .5
Beyond the Book .6
Where to Go from Here .7

PART 1: GETTING STARTED WITH JAVA . 9

CHAPTER 1: All about Java . 11
What You Can Do with Java .12
Why You Should Use Java .13
Getting Perspective: Where Java Fits In .14
Object-Oriented Programming (OOP) .16

Object-oriented languages .16
Objects and their classes .18
What’s so good about an object-oriented language? 19
Refining	your	understanding	of	classes	and	objects 21

What’s Next? .23

CHAPTER 2: All about Software . 25
Quick-Start Instructions .25
What You Install on Your Computer .28

What is a compiler? .29
What is a Java Virtual Machine? .32
Developing software .39
What is an integrated development environment? 40

CHAPTER 3: Using the Basic Building Blocks . 43
Speaking the Java Language .43

The grammar and the common names .44
The words in a Java program .45

vi Java For Dummies

Checking Out Java Code for the First Time .47
Understanding a Simple Java Program .48

The Java class .49
The Java method .50
The main method in a program .52
How	you	finally	tell	the	computer	to	do	something 53
Curly braces .55

And Now, a Few Comments .59
Adding comments to your code .60
What’s Barry’s excuse? .63
Using comments to experiment with your code 63

PART 2: WRITING YOUR OWN JAVA PROGRAMS 65

CHAPTER 4: Making the Most of Variables and Their Values . . . 67
Varying a Variable .68

Assignment statements .70
The types of values that variables may have 71
Displaying text .74
Numbers without decimal points .75
Combining declarations and initializing variables 77

Experimenting with JShell .78
What	Happened	to	All	the	Cool	Visual	Effects? .82
The Atoms: Java’s Primitive Types .82

The char type .83
The boolean type .85

The Molecules and Compounds: Reference Types 87
An Import Declaration .91
Creating New Values by Applying Operators .93

Initialize once, assign often .97
The increment and decrement operators .98
Assignment operators .102

CHAPTER 5: Controlling Program Flow with Decision-Making
Statements . 105
Making Decisions (Java if Statements) .106

Guess the number .106
She controlled keystrokes from the keyboard 107
Creating randomness .110
The if statement .111
The double equal sign .112
Brace yourself .112
Indenting if statements in your code .113
Elseless in Ifrica .114

Table of Contents vii

Using Blocks in JShell .116
Forming Conditions with Comparisons and Logical Operators 117

Comparing numbers; comparing characters 117
Comparing objects .118
Importing everything in one fell swoop .121
Java’s logical operators .121
Vive les nuls! .124
(Conditions in parentheses) .125

Building a Nest .127
Choosing among Many Alternatives (Java switch Statements) 130

Your basic switch statement .130
To break or not to break .134
Strings in a switch statement .136

CHAPTER 6: Controlling Program Flow with Loops 139
Repeating Instructions Over and Over Again
(Java while Statements) .140
Repeating a Certain Number of Times (Java for Statements) 143

The anatomy of a for statement .145
The world premiere of “Al’s All Wet” .147

Repeating	until	You	Get	What	You	Want (Java	do	Statements) 150
Reading a single character .154
File handling in Java .154
Variable declarations and blocks .156

PART 3: WORKING WITH THE BIG PICTURE:
OBJECT-ORIENTED PROGRAMMING . 159

CHAPTER 7: Thinking in Terms of Classes and Objects 161
Defining	a	Class	(What	It	Means	to	Be	an	Account) 162

Declaring variables and creating objects .164
Initializing a variable .167
Using	an	object’s	fields .167
One program; several classes .168
Public classes .168

Defining	a	Method	within	a	Class	(Displaying	an	Account) 169
An account that displays itself .171
The display method’s header .172

Sending Values to and from Methods (Calculating Interest) 173
Passing a value to a method .176
Returning a value from the getInterest method 178

Making Numbers Look Good .180

viii Java For Dummies

Hiding Details with Accessor Methods .185
Good programming . .185
Public	lives	and	private	dreams:	Making	a	field	inaccessible 188
Enforcing rules with accessor methods .190

Barry’s Own GUI Class . .190

CHAPTER 8: Saving Time and Money: Reusing
Existing Code . 197
Defining	a	Class	(What	It	Means	to	Be	an	Employee) 198

The last word on employees .198
Putting your class to good use .200
Cutting a check .204

Working with Disk Files (a Brief Detour) .205
Storing	data	in	a	file .205
Copying and pasting code .206
Reading	from	a	file .208
Who	moved	my	file? .210
Adding	directory	names	to	your	filenames 211
Reading a line at a time .212
Closing	the	connection	to	a	disk	file .213

Defining	Subclasses	(What	It	Means	to	Be	a	Full-Time	
or Part-Time Employee) .214

Creating a subclass .216
Creating subclasses is habit-forming .219

Using Subclasses .219
Making types match .221
The second half of the story .222

Overriding Existing Methods (Changing the Payments
for Some Employees) .224

A Java annotation .226
Using methods from classes and subclasses 226

CHAPTER 9: Constructing New Objects . 231
Defining	Constructors	(What	It	Means	to	Be	a	Temperature) 232

What is a temperature? .233
What is a temperature scale? (Java’s enum type) 233
Okay, so then what is a temperature? .234
What you can do with a temperature .236
Calling new Temperature(32 .0): A case study 239
Some things never change .241

More Subclasses (Doing Something about the Weather) 243
Building better temperatures .243
Constructors for subclasses .245
Using	all	this	stuff .246
The default constructor .247

Table of Contents ix

A Constructor That Does More .250
Classes and methods from the Java API .253
The SuppressWarnings annotation .254

PART 4: SMART JAVA TECHNIQUES . 257

CHAPTER 10: Putting Variables and Methods
Where They Belong . 259
Defining	a	Class	(What	It	Means	to	Be	a	Baseball	Player) 260

Another way to beautify your numbers .261
Using the Player class .261
One class; nine objects .264
Don’t get all GUI on me .265
Tossing an exception from method to method 266

Making Static (Finding the Team Average) .267
Why is there so much static? .269
Meet the static initializer .270
Displaying the overall team average .271
The static keyword is yesterday’s news .273
Could cause static; handle with care .274

Experiments with Variables .277
Putting a variable in its place .277
Telling a variable where to go .280

Passing Parameters . .285
Pass by value .285
Returning a result .287
Pass by reference .287
Returning an object from a method .289
Epilogue .292

CHAPTER 11: Using Arrays to Juggle Values . 293
Getting Your Ducks All in a Row .293

Creating an array in two easy steps .296
Storing values .297
Tab stops and other special things .299
Using an array initializer .299
Stepping through an array with the enhanced for loop 300
Searching .302
Writing	to	a	file .305
When	to	close	a	file .306

Arrays of Objects .307
Using the Room class .309
Yet another way to beautify your numbers 312
The conditional operator .313

x Java For Dummies

Command Line Arguments .315
Using	command	line	arguments	in	a	Java program 317
Checking for the right number of command line arguments 319

CHAPTER 12: Using Collections and Streams (When
Arrays Aren’t Good Enough) . 321
Understanding the Limitations of Arrays .321
Collection Classes to the Rescue .323

Using an ArrayList .323
Using generics .325
Wrapper classes .328
Testing for the presence of more data .330
Using an iterator .330
Java’s many collection classes .331

Functional Programming .333
Solving a problem the old-fashioned way .336
Streams .338
Lambda expressions .339
A taxonomy of lambda expressions .342
Using streams and lambda expressions .342
Why bother? .348
Method references .350

CHAPTER 13: Looking Good When Things Take
Unexpected Turns . 351
Handling Exceptions .352

The parameter in a catch clause .356
Exception types .357
Who’s going to catch the exception? .359
Catching two or more exceptions at a time 365
Throwing caution to the wind .366
Doing useful things .367
Our friends, the good exceptions .368

Handle an Exception or Pass the Buck .369
Finishing	the	Job	with	a	finally	Clause .376
A try Statement with Resources .379

CHAPTER 14: Sharing Names among the Parts of a
Java Program . 383
Access	Modifiers .384
Classes, Access, and Multipart Programs .385

Members versus classes .385
Access	modifiers	for	members .386

Table of Contents xi

Putting a drawing on a frame .389
Directory structure .391
Making a frame .392

Sneaking Away from the Original Code .394
Default access .396
Crawling back into the package .399

Protected Access .400
Subclasses that aren’t in the same package 400
Classes that aren’t subclasses (but are in the same package) 402

Access	Modifiers	for	Java	Classes .406
Public classes .406
Nonpublic classes .406

CHAPTER 15: Fancy Reference Types . 409
Java’s Types .409
The Java Interface .410

Two interfaces .411
Implementing interfaces .412
Putting the pieces together .415

Abstract Classes .417
Caring for your pet .420
Using all your classes .422

Relax! You’re Not Seeing Double! .424

CHAPTER 16:	Responding	to	Keystrokes	and	Mouse Clicks 427
Go	On . . . Click	That	Button .428

Events and event handling .430
Threads of execution .431
The keyword this .432
Inside the actionPerformed method .434
The serialVersionUID .435

Responding to Things Other Than Button Clicks 436
Creating Inner Classes .441

CHAPTER 17: Using Java Database Connectivity 445
Creating a Database and a Table .446

What happens when you run the code .447
Using SQL commands .447
Connecting and disconnecting .449

Putting Data in the Table .450
Retrieving Data .451
Destroying Data .453

xii Java For Dummies

PART 5: THE PART OF TENS . 455

CHAPTER 18: Ten Ways to Avoid Mistakes . 457
Putting Capital Letters Where They Belong .457
Breaking Out of a switch Statement .458
Comparing Values with a Double Equal Sign .458
Adding Components to a GUI .459
Adding Listeners to Handle Events .459
Defining	the	Required	Constructors .459
Fixing Non-Static References .460
Staying within Bounds in an Array .460
Anticipating Null Pointers .461
Helping Java Find Its Files .462

CHAPTER 19: Ten Websites for Java . 463
This Book’s Website .463
The Horse’s Mouth .463
Finding News, Reviews, and Sample Code .464
Got a Technical Question? .464

INDEX . 465

Introduction 1

Introduction
Java is good stuff. I’ve been using it for years. I like Java because it’s orderly.

Almost everything follows simple rules. The rules can seem intimidating at
times, but this book is here to help you figure them out. So, if you want to use

Java and you want an alternative to the traditional techie, soft-cover book, sit
down, relax, and start reading Java For Dummies, 7th Edition.

How to Use This Book
I wish I could say, “Open to a random page of this book and start writing Java
code. Just fill in the blanks and don’t look back.” In a sense, this is true. You can’t
break anything by writing Java code, so you’re always free to experiment.

But let me be honest. If you don’t understand the bigger picture, writing a program
is difficult. That’s true with any computer programming language — not just Java.
If you’re typing code without knowing what it’s about and the code doesn’t do
exactly what you want it to do, you’re just plain stuck.

In this book, I divide Java programming into manageable chunks. Each chunk is
(more or less) a chapter. You can jump in anywhere you want — Chapter 5,
 Chapter 10, or wherever. You can even start by poking around in the middle of a
chapter. I’ve tried to make the examples interesting without making one chapter
depend on another. When I use an important idea from another chapter, I include
a note to help you find your way around.

In general, my advice is as follows:

 » If you already know something, don’t bother reading about it.

 » If you’re curious, don’t be afraid to skip ahead. You can always sneak a peek at
an earlier chapter, if you really need to do so.

2 Java For Dummies

Conventions Used in This Book
Almost every technical book starts with a little typeface legend, and Java For
Dummies, 7th Edition, is no exception. What follows is a brief explanation of the
typefaces used in this book:

 » New terms are set in italics.

 » If you need to type something that’s mixed in with the regular text, the
characters you type appear in bold. For example: “Type MyNewProject in the
text field.”

 » You also see this computerese font. I use computerese for Java code,
filenames, web page addresses (URLs), onscreen messages, and other such
things. Also, if something you need to type is really long, it appears in comput-
erese font on its own line (or lines).

 » You need to change certain things when you type them on your own com-
puter keyboard. For instance, I may ask you to type

public class Anyname

which means that you type public class and then some name that you make
up on your own. Words that you need to replace with your own words are set
in italicized computerese.

What You Don’t Have to Read
Pick the first chapter or section that has material you don’t already know and start
reading there. Of course, you may hate making decisions as much as I do. If so,
here are some guidelines that you can follow:

 » If you already know what kind of an animal Java is and know that you want to
use Java, skip Chapter 1 and go straight to Chapter 2. Believe me, I won’t mind.

 » If you already know how to get a Java program running, and you don’t care
what happens behind the scenes when a Java program runs, skip Chapter 2
and start with Chapter 3.

 » If you write programs for a living but use any language other than C or C++,
start with Chapter 2 or 3. When you reach Chapters 5 and 6, you’ll probably
find them to be easy reading. When you get to Chapter 7, it’ll be time to dive in.

Introduction 3

 » If you write C (not C++) programs for a living, start with Chapters 2, 3, and 4
and just skim Chapters 5 and 6.

 » If you write C++ programs for a living, glance at Chapters 2 and 3, skim
Chapters 4 through 6, and start reading seriously in Chapter 7. (Java is a bit
different from C++ in the way it handles classes and objects.)

 » If you write Java programs for a living, come to my house and help me write
Java For Dummies, 8th Edition.

If you want to skip the sidebars and the Technical Stuff icons, please do. In fact, if
you want to skip anything at all, feel free.

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are
 incorrect . . . well, buy the book anyway:

 » I assume that you have access to a computer. Here’s the good news: You
can run most of the code in this book on almost any computer. The only
computers that you can’t use to run this code are ancient things that are more
than ten years old (give or take a few years).

 » I assume that you can navigate through your computer’s common
menus and dialog boxes. You don’t have to be a Windows, Linux, or
Macintosh power user, but you should be able to start a program, find a file,
put a file into a certain directory . . . that sort of thing. Most of the time, when
you practice the stuff in this book, you’re typing code on the keyboard, not
pointing and clicking the mouse.

On those rare occasions when you need to drag and drop, cut and paste, or
plug and play, I guide you carefully through the steps. But your computer may
be configured in any of several billion ways, and my instructions may not quite
fit your special situation. When you reach one of these platform-specific tasks,
try following the steps in this book. If the steps don’t quite fit, consult a book
with instructions tailored to your system.

 » I assume that you can think logically. That’s all there is to programming in
Java — thinking logically. If you can think logically, you’ve got it made. If you
don’t believe that you can think logically, read on. You may be pleasantly
surprised.

4 Java For Dummies

 » I make few assumptions about your computer programming experience
(or your lack of such experience). In writing this book, I’ve tried to do the
impossible: I’ve tried to make the book interesting for experienced program-
mers yet accessible to people with little or no programming experience.
This means that I don’t assume any particular programming background on
your part. If you’ve never created a loop or indexed an array, that’s okay.

On the other hand, if you’ve done these things (maybe in Visual Basic, Python,
or C++), you’ll discover some interesting plot twists in Java. The developers of
Java took the best ideas in object-oriented programming, streamlined them,
reworked them, and reorganized them into a sleek, powerful way of thinking
about problems. You’ll find many new, thought-provoking features in Java. As
you find out about these features, many of them will seem quite natural to
you. One way or another, you’ll feel good about using Java.

How This Book Is Organized
This book is divided into subsections, which are grouped into sections, which
come together to make chapters, which are lumped finally into five parts. (When
you write a book, you get to know your book’s structure pretty well. After months
of writing, you find yourself dreaming in sections and chapters when you go to
bed at night.) The parts of the book are listed here.

Part 1: Getting Started with Java
This part is your complete, executive briefing on Java. It includes some “What is
Java?” material and a jump-start chapter — Chapter 3. In Chapter 3, you visit the
major technical ideas and dissect a simple program.

Part 2: Writing Your Own Java Program
Chapters 4 through 6 cover the fundamentals. These chapters describe the things
that you need to know so that you can get your computer humming along.

If you’ve written programs in Visual Basic, C++, or any another language, some of
the material in Part 2 may be familiar to you. If so, you can skip some sections or
read this stuff quickly. But don’t read too quickly. Java is a little different from some
other programming languages, especially in the things that I describe in Chapter 4.

Introduction 5

Part 3: Working with the Big Picture:
Object-Oriented Programming
Part 3 has some of my favorite chapters. This part covers the all-important topic
of object-oriented programming. In these chapters, you find out how to map
solutions to big problems. (Sure, the examples in these chapters aren’t big, but the
examples involve big ideas.) In bite-worthy increments, you discover how to
design classes, reuse existing classes, and construct objects.

Have you read any of those books that explain object-oriented programming in
vague, general terms? I’m proud to say that Java For Dummies, 7th Edition, isn’t
like that. In this book, I illustrate each concept with a simple-yet-concrete pro-
gram example.

Part 4: Smart Java Techniques
If you’ve tasted some Java and you want more, you can find what you need in this
part of the book. This part’s chapters are devoted to details — the things that you
don’t see when you first glance at the material. After you read the earlier parts and
write some programs on your own, you can dive in a little deeper by reading Part 4.

Part 5: The Part of Tens
The Part of Tens is a little Java candy store. In the Part of Tens, you can find
lists — lists of tips for avoiding mistakes, for finding resources, and for all kinds
of interesting goodies.

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer, talk-
ing to myself. I say each sentence in my head. Most of the sentences, I mutter
several times. When I have an extra thought, a side comment, or something that
doesn’t belong in the regular stream, I twist my head a little bit. That way, who-
ever’s listening to me (usually nobody) knows that I’m off on a momentary
tangent.

Of course, in print, you can’t see me twisting my head. I need some other way of
setting a side thought in a corner by itself. I do it with icons. When you see a Tip
icon or a Remember icon, you know that I’m taking a quick detour.

6 Java For Dummies

Here’s a list of icons that I use in this book:

A tip is an extra piece of information — something helpful that the other books
may forget to tell you.

Everyone makes mistakes. Heaven knows that I’ve made a few in my time. Any-
way, when I think people are especially prone to make a mistake, I mark it with a
Warning icon.

Question: What’s stronger than a Tip, but not as strong as a Warning?

Answer: A Remember icon.

“If you don’t remember what such-and-such means, see blah-blah-blah,” or
“For more information, read blahbity-blah-blah.”

Writing computer code is an activity, and the best way to learn an activity is to
practice it. That’s why I’ve created things for you to try in order to reinforce your
knowledge. Many of these are confidence-builders, but some are a bit more chal-
lenging. When you first start putting things into practice, you’ll discover all kinds
of issues, quandaries, and roadblocks that didn’t occur to you when you started
reading about the material. But that’s a good thing. Keep at it! Don’t become frus-
trated. Or, if you do become frustrated, visit this book’s website (www.allmycode.
com/JavaForDummies) for hints and solutions.

This icon calls attention to useful material that you can find online. Check it out!

Occasionally, I run across a technical tidbit. The tidbit may help you understand
what the people behind the scenes (the people who developed Java) were thinking.
You don’t have to read it, but you may find it useful. You may also find the tidbit
helpful if you plan to read other (more geeky) books about Java.

Beyond the Book
In addition to what you’re reading right now, this book comes with a free access-
anywhere Cheat Sheet containing code that you can copy and paste into your own
Android program. To get this Cheat Sheet, simply go to www.dummies.com and type
Java For Dummies Cheat Sheet in the Search box.

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies
http://www.dummies.com/

Introduction 7

Where to Go from Here
If you’ve gotten this far, you’re ready to start reading about Java application
development. Think of me (the author) as your guide, your host, your personal
assistant. I do everything I can to keep things interesting and, most importantly,
to help you understand.

If you like what you read, send me a note. My email address, which I created just
for comments and questions about this book, is JavaForDummies@allmycode.
com. If email and chat aren’t your favorites, you can reach me instead on Twitter
(@allmycode) and on Facebook (www.facebook.com/allmycode). And don’t
forget — for the latest updates, visit this book’s website. The site’s address is
www.allmycode.com/JavaForDummies.

mailto:JavaForDummies@allmycode.com
mailto:JavaForDummies@allmycode.com
http://www.twitter.com/allmycode
http://www.facebook.com/allmycode
http://www.allmycode.com/JavaForDummies

1Getting Started
with Java

IN THIS PART . . .

Find out about the tools you need for developing Java
programs.

Find out how Java fits into today’s technology scene.

See your first complete Java program.

CHAPTER 1 All about Java 11

IN THIS CHAPTER

 » What Java is

 » Where Java came from

 » Why Java is so cool

 » How to orient yourself to object-
oriented programming

All about Java

S
ay what you want about computers. As far as I’m concerned, computers are
good for just two simple reasons:

 » When computers do work, they feel no resistance, no stress, no bore-
dom, and no fatigue. Computers are our electronic slaves. I have my
computer working 24/7 doing calculations for Cosmology@Home — a distrib-
uted computing project to investigate models describing the universe. Do I
feel sorry for my computer because it’s working so hard? Does the computer
complain? Will the computer report me to the National Labor Relations
Board? No.

I can make demands, give the computer its orders, and crack the whip.
Do I (or should I) feel the least bit guilty? Not at all.

 » Computers move ideas, not paper. Not long ago, when you wanted to send
a message to someone, you hired a messenger. The messenger got on his or
her horse and delivered your message personally. The message was on paper,
parchment, a clay tablet, or whatever physical medium was available at the
time.

This whole process seems wasteful now, but that’s only because you and I are
sitting comfortably in the electronic age. Messages are ideas, and physical
things like ink, paper, and horses have little or nothing to do with real ideas;
they’re just temporary carriers for ideas (even though people used them to
carry ideas for several centuries). Nevertheless, the ideas themselves are
paperless, horseless, and messengerless.

Chapter 1

https://www.cosmologyathome.org/

12 PART 1 Getting Started with Java

The neat thing about computers is that they carry ideas efficiently. They carry
nothing but the ideas, a couple of photons, and a little electrical power. They
do this with no muss, no fuss, and no extra physical baggage.

When you start dealing efficiently with ideas, something very nice happens. Sud-
denly, all the overhead is gone. Instead of pushing paper and trees, you’re pushing
numbers and concepts. Without the overhead, you can do things much faster and
do things that are far more complex than ever before.

What You Can Do with Java
It would be so nice if all this complexity were free, but unfortunately, it isn’t.
Someone has to think hard and decide exactly what to ask the computer to do.
After that thinking takes place, someone has to write a set of instructions for the
computer to follow.

Given the current state of affairs, you can’t write these instructions in English or
any other language that people speak. Science fiction is filled with stories about
people who say simple things to robots and get back disastrous, unexpected
results. English and other such languages are unsuitable for communication with
computers, for several reasons:

 » An English sentence can be misinterpreted. “Chew one tablet three times a
day until finished.”

 » It’s difficult to weave a very complicated command in English. “Join flange
A to protuberance B, making sure to connect only the outermost lip of flange
A to the larger end of the protuberance B, while joining the middle and inner
lips of flange A to grommet C.”

 » An English sentence has lots of extra baggage. “Sentence has unneeded
words.”

 » English is difficult to interpret. “As part of this Publishing Agreement
between John Wiley & Sons, Inc. (‘Wiley’) and the Author (‘Barry Burd’), Wiley
shall pay the sum of one-thousand-two-hundred-fifty-seven dollars and
sixty-three cents ($1,257.63) to the Author for partial submittal of Java For
Dummies, 7th Edition (‘the Work’).”

To tell a computer what to do, you have to use a special language to write terse,
unambiguous instructions. A special language of this kind is called a computer
programming language. A set of instructions written in such a language is called a
program. When looked at as a big blob, these instructions are called software or
code. Here’s what code looks like when it’s written in Java:

CHAPTER 1 All about Java 13

public class PayBarry {

 public static void main(String args[]) {

 double checkAmount = 1257.63;

 System.out.print("Pay to the order of ");

 System.out.print("Dr. Barry Burd ");

 System.out.print("$");

 System.out.println(checkAmount);

 }

}

Why You Should Use Java
It’s time to celebrate! You’ve just picked up a copy of Java For Dummies, 7th Edition,
and you’re reading Chapter 1. At this rate, you’ll be an expert Java programmer* in
no time at all, so rejoice in your eventual success by throwing a big party.

To prepare for the party, I’ll bake a cake. I’m lazy, so I’ll use a ready-to-bake cake
mix. Let me see . . . add water to the mix and then add butter and eggs — hey,
wait! I just looked at the list of ingredients. What’s MSG? And what about propyl-
ene glycol? That’s used in antifreeze, isn’t it?

I’ll change plans and make the cake from scratch. Sure, it’s a little harder, but that
way I get exactly what I want.

Computer programs work the same way. You can use somebody else’s program or
write your own. If you use somebody else’s program, you use whatever you get. When
you write your own program, you can tailor the program especially for your needs.

Writing computer code is a big, worldwide industry. Companies do it, freelance
professionals do it, hobbyists do it — all kinds of people do it. A typical big com-
pany has teams, departments, and divisions that write programs for the company.
But you can write programs for yourself or someone else, for a living or for fun. In
a recent estimate, the number of lines of code written each day by programmers
in the United States alone exceeds the number of methane molecules on the planet
Jupiter.** Take almost anything that can be done with a computer. With the right
amount of time, you can write your own program to do it. (Of course, the “right
amount of time” may be very long, but that’s not the point. Many interesting and
useful programs can be written in hours or even minutes.)

*In professional circles, a developer’s responsibilities are usually broader than
those of a programmer. But, in this book, I use the terms programmer and devel-
oper almost interchangeably.

**I made up this fact all by myself.

14 PART 1 Getting Started with Java

Getting Perspective: Where Java Fits In
Here’s a brief history of modern computer programming:

 » 1954–1957: FORTRAN is developed.

FORTRAN was the first modern computer programming language. For
scientific programming, FORTRAN is a real racehorse. Year after year,
FORTRAN is a leading language among computer programmers throughout
the world.

 » 1959: Grace Hopper at Remington Rand develops the COBOL program-
ming language.

The letter B in COBOL stands for Business, and business is just what COBOL is
all about. The language’s primary feature is the processing of one record after
another, one customer after another, or one employee after another.

Within a few years after its initial development, COBOL became the most
widely used language for business data processing.

 » 1972: Dennis Ritchie at AT&T Bell Labs develops the C programming
language.

The “look and feel” that you see in this book’s examples comes from the C
programming language. Code written in C uses curly braces, if statements,
for statements, and so on.

In terms of power, you can use C to solve the same problems that you can
solve by using FORTRAN, Java, or any other modern programming language.
(You can write a scientific calculator program in COBOL, but doing that sort of
thing would feel really strange.) The difference between one programming
language and another isn’t power. The difference is ease and appropriateness
of use. That’s where the Java language excels.

 » 1986: Bjarne Stroustrup (again at AT&T Bell Labs) develops C++.

Unlike its C language ancestor, the language C++ supports object-oriented
programming. This support represents a huge step forward. (See the next
section in this chapter.)

 » May 23, 1995: Sun Microsystems releases its first official version of the
Java programming language.

Java improves upon the concepts in C++. Java’s “Write Once, Run Anywhere”
philosophy makes the language ideal for distributing code across the Internet.

Additionally, Java is a great general-purpose programming language. With
Java, you can write windowed applications, build and explore databases,

CHAPTER 1 All about Java 15

control handheld devices, and more. Within five short years, the Java pro-
gramming language had 2.5 million developers worldwide. (I know. I have a
commemorative T-shirt to prove it.)

 » November 2000: The College Board announces that, starting in the year
2003, the Computer Science Advanced Placement exams will be based
on Java.

Wanna know what that snot-nosed kid living down the street is learning in
high school? You guessed it — Java.

 » 2002: Microsoft introduces a new language, named C#.

Many of the C# language features come directly from features in Java.

 » June 2004: Sys-Con Media reports that the demand for Java programmers
tops the demand for C++ programmers by 50 percent (http://java.
sys-con.com/node/48507).

And there’s more! The demand for Java programmers beats the combined
demand for C++ and C# programmers by 8 percent. Java programmers are
more employable than Visual Basic (VB) programmers by a whopping 190
percent.

 » 2007: Google adopts Java as the primary language for creating apps on
Android mobile devices.

 » January 2010: Oracle Corporation purchases Sun Microsystems, bringing
Java technology into the Oracle family of products.

 » June 2010: eWeek ranks Java first among its “Top 10 Programming
Languages to Keep You Employed” (www.eweek.com/c/a/Application-
Development/Top-10-Programming-Languages-to-Keep-You-Employed-
719257).

 » 2016: Java runs on 15 billion devices (http://java.com/en/about), with
Android Java running on 87.6 percent of all mobile phones worldwide
(www.idc.com/prodserv/smartphone-os-market-share.jsp).

Additionally, Java technology provides interactive capabilities to all Blu-ray
devices and is the most popular programming language in the TIOBE
Programming Community Index (www.tiobe.com/index.php/content/
paperinfo/tpci), on PYPL: the PopularitY of Programming Language Index
(http://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-
of-Programming-Language), and on other indexes.

Well, I’m impressed.

http://java.sys-con.com/node/48507
http://java.sys-con.com/node/48507
http://www.eweek.com/c/a/Application-Development/Top-10-Programming-Languages-to-Keep-You-Employed-719257
http://www.eweek.com/c/a/Application-Development/Top-10-Programming-Languages-to-Keep-You-Employed-719257
http://www.eweek.com/c/a/Application-Development/Top-10-Programming-Languages-to-Keep-You-Employed-719257
http://java.com/en/about
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.tiobe.com/index.php/content/paperinfo/tpci
http://www.tiobe.com/index.php/content/paperinfo/tpci
http://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language
http://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language

16 PART 1 Getting Started with Java

Object-Oriented Programming (OOP)
It’s three in the morning. I’m dreaming about the history course that I failed in
high school. The teacher is yelling at me, “You have two days to study for the final
exam, but you won’t remember to study. You’ll forget and feel guilty, guilty,
guilty.”

Suddenly, the phone rings. I’m awakened abruptly from my deep sleep. (Sure,
I disliked dreaming about the history course, but I like being awakened even less.)
At first, I drop the telephone on the floor. After fumbling to pick it up, I issue a
grumpy, “Hello, who’s this?” A voice answers, “I’m a reporter from the New York
Times. I’m writing an article about Java, and I need to know all about the program-
ming language in five words or less. Can you explain it?”

My mind is too hazy. I can’t think. So I say the first thing that comes to my mind
and then go back to sleep.

Come morning, I hardly remember the conversation with the reporter. In fact,
I don’t remember how I answered the question. Did I tell the reporter where he
could put his article about Java?

I put on my robe and rush out to my driveway. As I pick up the morning paper,
I glance at the front page and see this 2-inch headline:

Burd Calls Java “A Great Object-Oriented Language”

Object-oriented languages
Java is object-oriented. What does that mean? Unlike languages, such as FOR-
TRAN, that focus on giving the computer imperative “Do this/Do that” com-
mands, object-oriented languages focus on data. Of course, object-oriented
programs still tell the computer what to do. They start, however, by organizing
the data, and the commands come later.

Object-oriented languages are better than “Do this/Do that” languages because
they organize data in a way that helps people do all kinds of things with it. To
modify the data, you can build on what you already have rather than scrap every-
thing you’ve done and start over each time you need to do something new.
Although computer programmers are generally smart people, they took a while to
figure this out. For the full history lesson, see the sidebar “The winding road from
FORTRAN to Java” (but I won’t make you feel guilty if you don’t read it).

CHAPTER 1 All about Java 17

(continued)

THE WINDING ROAD FROM
FORTRAN TO JAVA
In the mid-1950s, a team of people created a programming language named
FORTRAN. It was a good language, but it was based on the idea that you should issue
direct, imperative commands to the computer. “Do this, computer. Then do that, com-
puter.” (Of course, the commands in a real FORTRAN program were much more precise
than “Do this” or “Do that.”)

In the years that followed, teams developed many new computer languages, and many
of the languages copied the FORTRAN “Do this/Do that” model. One of the more popu-
lar “Do this/Do that” languages went by the 1-letter name C. Of course, the “Do this/Do
that” camp had some renegades. In languages named SIMULA and Smalltalk, program-
mers moved the imperative “Do this” commands into the background and concentrated
on descriptions of data. In these languages, you didn’t come right out and say, “Print a
list of delinquent accounts.” Instead, you began by saying, “This is what it means to be
an account. An account has a name and a balance.” Then you said, “This is how you ask
an account whether it’s delinquent.” Suddenly, the data became king. An account was a
thing that had a name, a balance, and a way of telling you whether it was delinquent.

Languages that focus first on the data are called object-oriented programming lan-
guages. These object-oriented languages make excellent programming tools.
Here’s why:

• Thinking first about the data makes you a good computer programmer.

• You can extend and reuse the descriptions of data over and over again. When you
try to teach old FORTRAN programs new tricks, however, the old programs show
how brittle they are. They break.

In the 1970s, object-oriented languages, such as SIMULA and Smalltalk, were buried in
the computer hobbyist magazine articles. In the meantime, languages based on the old
FORTRAN model were multiplying like rabbits.

So in 1986, a fellow named Bjarne Stroustrup created a language named C++. The C++
language became very popular because it mixed the old C language terminology with
the improved object-oriented structure. Many companies turned their backs on the old
FORTRAN/C programming style and adopted C++ as their standard.

18 PART 1 Getting Started with Java

Objects and their classes
In an object-oriented language, you use objects and classes to organize your data.

Imagine that you’re writing a computer program to keep track of the houses in a
new condominium development (still under construction). The houses differ only
slightly from one another. Each house has a distinctive siding color, an indoor
paint color, a kitchen cabinet style, and so on. In your object-oriented computer
program, each house is an object.

But objects aren’t the whole story. Although the houses differ slightly from one
another, all the houses share the same list of characteristics. For instance, each
house has a characteristic known as siding color. Each house has another charac-
teristic known as kitchen cabinet style. In your object-oriented program, you need a
master list containing all the characteristics that a house object can possess. This
master list of characteristics is called a class.

So there you have it. Object-oriented programming is misnamed. It should be
called “programming with classes and objects.”

(continued)

But C++ had a flaw. Using C++, you could bypass all the object-oriented features and
write a program by using the old FORTRAN/C programming style. When you started
writing a C++ accounting program, you could take either fork in the road:

• Start by issuing direct “Do this” commands to the computer, saying the mathemati-
cal equivalent of “Print a list of delinquent accounts, and make it snappy.”

• Choose the object-oriented approach and begin by describing what it means to be
an account.

Some people said that C++ offered the best of both worlds, but others argued that the
first world (the world of FORTRAN and C) shouldn’t be part of modern programming. If
you gave a programmer an opportunity to write code either way, the programmer
would too often choose to write code the wrong way.

So in 1995, James Gosling of Sun Microsystems created the language named Java. In cre-
ating Java, Gosling borrowed the look and feel of C++. But Gosling took most of the old
“Do this/Do that” features of C++ and threw them in the trash. Then he added features
that made the development of objects smoother and easier. All in all, Gosling created a
language whose object-oriented philosophy is pure and clean. When you program in
Java, you have no choice but to work with objects. That’s the way it should be.

CHAPTER 1 All about Java 19

Now notice that I put the word classes first. How dare I do this! Well, maybe I’m
not so crazy. Think again about a housing development that’s under construction.
Somewhere on the lot, in a rickety trailer parked on bare dirt, is a master list of
characteristics known as a blueprint. An architect’s blueprint is like an object-
oriented programmer’s class. A blueprint is a list of characteristics that each
house will have. The blueprint says, “siding.” The actual house object has gray
siding. The blueprint says, “kitchen cabinet.” The actual house object has Louis
XIV kitchen cabinets.

The analogy doesn’t end with lists of characteristics. Another important parallel
exists between blueprints and classes. A year after you create the blueprint, you
use it to build ten houses. It’s the same with classes and objects. First, the pro-
grammer writes code to describe a class. Then when the program runs, the com-
puter creates objects from the (blueprint) class.

So that’s the real relationship between classes and objects. The programmer
defines a class, and from the class definition, the computer makes individual
objects.

What’s so good about an object-oriented
language?
Based on the preceding section’s story about home building, imagine that you’ve
already written a computer program to keep track of the building instructions for
houses in a new development. Then, the big boss decides on a modified plan — a
plan in which half the houses have three bedrooms and the other half have four.

If you use the old FORTRAN/C style of computer programming, your instructions
look like this:

Dig a ditch for the basement.

Lay concrete around the sides of the ditch.

Put two-by-fours along the sides for the basement’s frame.

...

This would be like an architect creating a long list of instructions instead of a
blueprint. To modify the plan, you have to sort through the list to find the instruc-
tions for building bedrooms. To make things worse, the instructions could be
scattered among pages 234, 394–410, 739, 10, and 2. If the builder had to decipher
other peoples’ complicated instructions, the task would be ten times harder.

20 PART 1 Getting Started with Java

Starting with a class, however, is like starting with a blueprint. If you decide to
have both three- and four-bedroom houses, you can start with a blueprint called
the house blueprint that has a ground floor and a second floor, but has no indoor
walls drawn on the second floor. Then you make two more second-floor
 blueprints — one for the three-bedroom house and another for the four-bedroom
house. (You name these new blueprints the three-bedroom house blueprint and the
four-bedroom house blueprint.)

Your builder colleagues are amazed with your sense of logic and organization, but
they have concerns. They pose a question. “You called one of the blueprints the
‘three-bedroom house’ blueprint. How can you do this if it’s a blueprint for a
second floor and not for a whole house?”

You smile knowingly and answer, “The three-bedroom house blueprint can say,
‘For info about the lower floors, see the original house blueprint.’ That way, the
three-bedroom house blueprint describes a whole house. The four-bedroom
house blueprint can say the same thing. With this setup, we can take advantage of
all the work we already did to create the original house blueprint and save lots of
money.”

In the language of object-oriented programming, the three- and four-bedroom
house classes are inheriting the features of the original house class. You can also
say that the three- and four-bedroom house classes are extending the original
house class. (See Figure 1-1.)

The original house class is called the superclass of the three- and four-bedroom
house classes. In that vein, the three- and four-bedroom house classes are sub-
classes of the original house class. Put another way, the original house class is
called the parent class of three- and four-bedroom house classes. The three- and
four-bedroom house classes are child classes of the original house class. (Refer to
Figure 1-1.)

Needless to say, your homebuilder colleagues are jealous. A crowd of homebuild-
ers is mobbing around you to hear about your great ideas. So, at that moment, you
drop one more bombshell: “By creating a class with subclasses, we can reuse the
blueprint in the future. If someone comes along and wants a five-bedroom house,
we can extend our original house blueprint by making a five-bedroom house
blueprint. We’ll never have to spend money for an original house blueprint again.”

“But,” says a colleague in the back row, “what happens if someone wants a dif-
ferent first-floor design? Do we trash the original house blueprint or start scrib-
bling all over the original blueprint? That’ll cost big bucks, won’t it?”

CHAPTER 1 All about Java 21

In a confident tone, you reply, “We don’t have to mess with the original house
blueprint. If someone wants a Jacuzzi in his living room, we can make a new,
small blueprint describing only the new living room and call this the Jacuzzi-in-
living-room house blueprint. Then, this new blueprint can refer to the original
house blueprint for info on the rest of the house (the part that’s not in the living
room).” In the language of object-oriented programming, the Jacuzzi-in-living-
room house blueprint still extends the original house blueprint. The Jacuzzi blue-
print is still a subclass of the original house blueprint. In fact, all the terminology
about superclass, parent class, and child class still applies. The only thing that’s
new is that the Jacuzzi blueprint overrides the living room features in the original
house blueprint.

In the days before object-oriented languages, the programming world experi-
enced a crisis in software development. Programmers wrote code, and then dis-
covered new needs, and then had to trash their code and start from scratch. This
problem happened over and over again because the code that the programmers
were writing couldn’t be reused. Object-oriented programming changed all this
for the better (and, as Burd said, Java is “A Great Object-Oriented Language”).

Refining your understanding
of classes and objects
When you program in Java, you work constantly with classes and objects. These
two ideas are really important. That’s why, in this chapter, I hit you over the head
with one analogy after another about classes and objects.

FIGURE 1-1:
Terminology in
object-oriented
programming.

22 PART 1 Getting Started with Java

Close your eyes for a minute and think about what it means for something to be a
chair

A chair has a seat, a back, and legs. Each seat has a shape, a color, a degree of soft-
ness, and so on. These are the properties that a chair possesses. What I describe is
chairness — the notion of something being a chair. In object-oriented terminol-
ogy, I’m describing the Chair class.

Now peek over the edge of this book’s margin and take a minute to look around
your room. (If you’re not sitting in a room right now, fake it.)

Several chairs are in the room, and each chair is an object. Each of these objects is
an example of that ethereal thing called the Chair class. So that’s how it works —
the class is the idea of chairness, and each individual chair is an object.

A class isn’t quite a collection of things. Instead, a class is the idea behind a cer-
tain kind of thing. When I talk about the class of chairs in your room, I’m talking
about the fact that each chair has legs, a seat, a color, and so on. The colors may
be different for different chairs in the room, but that doesn’t matter. When you
talk about a class of things, you’re focusing on the properties that each of the
things possesses.

It makes sense to think of an object as being a concrete instance of a class. In fact,
the official terminology is consistent with this thinking. If you write a Java pro-
gram in which you define a Chair class, each actual chair (the chair that you’re
sitting on, the empty chair right next to you, and so on) is called an instance of the
Chair class.

Here’s another way to think about a class. Imagine a table displaying all three of
your bank accounts. (See Table 1-1.)

TABLE 1-1	 A Table of Accounts
Account Number Type Balance

16-13154-22864-7 Checking 174.87

1011 1234 2122 0000 Credit –471.03

16-17238-13344-7 Savings 247.38

CHAPTER 1 All about Java 23

Think of the table’s column headings as a class, and think of each row of the table
as an object. The table’s column headings describe the Account class.

According to the table’s column headings, each account has an account number, a
type, and a balance. Rephrased in the terminology of object-oriented program-
ming, each object in the Account class (that is, each instance of the Account class)
has an account number, a type, and a balance. So, the bottom row of the table is
an object with account number 16-17238-13344-7. This same object has type Sav-
ings and a balance of 247.38. If you opened a new account, you would have another
object, and the table would grow an additional row. The new object would be an
instance of the same Account class.

What’s Next?
This chapter is filled with general descriptions of things. A general description is
good when you’re just getting started, but you don’t really understand things
until you get to know some specifics. That’s why the next several chapters deal
with specifics.

So please, turn the page. The next chapter can’t wait for you to read it.

CHAPTER 2 All about Software 25

IN THIS CHAPTER

 » Understanding the roles of the
software development tools

 » Selecting the version of Java that’s
right for you

 » Preparing to write and run Java
programs

All about Software

The best way to get to know Java is to do Java. When you’re doing Java, you’re
writing, testing, and running your own Java programs. This chapter gets
you ready to do Java by describing the general software setup — the soft-

ware that you must have on your computer whether you run Windows, Mac,
Linux, or Joe’s Private Operating System. This chapter doesn’t describe the specific
setup instructions for Windows, for a Mac, or for any other system.

For setup instructions that are specific to your system, visit this book’s website
(www.allmycode.com/JavaForDummies).

Quick-Start Instructions
If you’re a seasoned veteran of computers and computing (whatever that means),
and if you’re too jumpy to get detailed instructions from this book’s website, you
can try installing the required software by following this section’s general instruc-
tions. The instructions work for many computers, but not all. And this section
provides no detailed steps, no if-this-then-do-that alternatives, and no this-
works-but-you’re-better-off-doing-something-else tips.

Chapter 2

http://www.allmycode.com/JavaForDummies

26 PART 1 Getting Started with Java

To prepare your computer for writing Java programs, follow these steps:

1. Install the Java Development Kit.

To do so, visit www.oracle.com/technetwork/java/javase/downloads.

Follow the instructions at that website to download and install the newest Java
SE JDK.

Look for the Standard Edition (SE). Don’t bother with the Enterprise Edition (EE)
or any other such edition. Also, go for the JDK, not the JRE. If you see a code
number, such as 9u3, this stands for "the 3rd update of Java 9." Generally,
anything marked Java 9 or later is good for running the examples in this book.

2. Install an integrated development environment.

An integrated development environment (IDE) is a program to help you compose
and test new software. For this book’s examples, you can use almost any IDE
that supports Java.

Here’s a list of the most popular Java IDEs:

• Eclipse

According to www.baeldung.com/java-ides-2016, 48.2 percent of the
world’s Java programmers used the Eclipse IDE in mid-2016.

To download and use Eclipse, follow the instructions at http://eclipse.
org/downloads. Eclipse’s download page may offer you several different
packages, including Eclipse for Java EE, Eclipse for JavaScript, Eclipse for
Java and DSL, and others. To run this book’s examples, you need a
relatively small Eclipse package — the Eclipse IDE for Java Developers.

Eclipse is free for commercial and noncommercial use.

• IntelliJ IDEA

In Baeldung’s survey of Java IDEs (http://www.baeldung.com/java-
ides-2016), IntelliJ IDEA comes in a close second, with 43.6 percent of all
programmers onboard.

When you visit www.jetbrains.com/idea, you can download the
Community Edition (which is free) or the Ultimate Edition (which isn’t free).
To run this book’s examples, you can use the Community Edition. You can
even use the Community Edition to create commercial software!

http://www.oracle.com/technetwork/java/javase/downloads
http://www.baeldung.com/java-ides-2016
http://eclipse.org/downloads
http://eclipse.org/downloads
http://www.baeldung.com/java-ides-2016
http://www.baeldung.com/java-ides-2016
https://www.jetbrains.com/idea/

