

Exploring BeagleBone®
Second Edition

Exploring BeagleBone®

Tools and Techniques for Building with
Embedded Linux®

Second Edition

Derek Molloy

Exploring BeagleBone®: Tools and Techniques for Building with Embedded Linux®, Second Edition

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-53316-0
ISBN: 978-1-119-53315-3 (ebk)
ISBN: 978-1-119-53317-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Per-
missions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Nei-
ther the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site
is referred to in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or website may provide or recommendations it may make.
Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018962584

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. BeagleBone is
a registered trademark of BeagleBoard.org Foundation. Linux is a registered trademark of Linus Torvalds. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or
vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.BeagleBoard.org

To Sally, Daragh, Eoghan, Aidan, and Sarah

vii

Dr. Derek Molloy is an associate professor in the Faculty of Engineering and
Computing’s School of Electronic Engineering at Dublin City University, Ire-
land. He lectures at undergraduate and postgraduate levels in object-oriented
programming with embedded systems, digital and analog electronics, and
connected embedded systems. His research contributions have largely been in
the fields of computer and machine vision, embedded systems, 3D graphics/
visualization, and e-learning.

Derek produces a popular YouTube video series that has introduced millions
of people to embedded Linux and digital electronics topics. In 2013, he launched
a personal web/blog site that is visited by thousands of people every day and
that integrates his YouTube videos with support materials, source code, and user
discussion. In 2015, he published the first edition of this book on the BeagleBone
platform, Exploring BeagleBone, and followed up in June 2016 with Exploring
Raspberry Pi. Both of these books have received strong acclaim for both their
depth of coverage and accessibility.

Derek has received several awards for teaching and learning. He was the
winner of the 2012 Irish Learning Technology Association (ILTA) national
award for Innovation in Teaching and Learning. The award recognizes his
learning-by-doing approach to undergraduate engineering education, which
utilizes electronic kits and online video content. In 2012, as a result of fervent
nominations from his students and peers, he was also awarded the Dublin City
University President’s Award for Excellence in Teaching and Learning. This
learning-by-doing approach is strongly reflected in his books.

You can learn more about Derek, his work, and his other publications at his
personal website, www.derekmolloy.ie.

About the Author

http://www.derekmolloy.ie

ix

Marcia K. Wilbur is a technical communicator consulting in the semiconductor
field, focusing on industrial IoT (IIoT). Marcia holds degrees in computer science,
technical communication, and information technology. As the Copper Linux
User Group interim president, she is heavily involved in the East Valley maker
community, leading regular Raspberry Pi, BeagleBone, Banana Pi/Pro, and
ESP8266 projects, including home automation, gaming consoles, surveillance,
network, multimedia and other “pi fun.”

In addition to tinkering, she volunteers to aid disaster-stricken areas in get-
ting access to public domain content to enable students to continue learning. For
fun, she serves the community as the lead Debian developer for Linux Respin,
a backup and distro customization tool.

About the Technical Editor

xi

Acquisitions Assistant
Devon Lewis

Project Editor
Adaobi Obi Tulton

Technical Editor
Marcia K. Wilbur

Production Editor
Barath Kumar Rajasekaran

Copy Editor
Kim Wimpsett

Production Manager
Katie Wisor

Content Enablement and
Operations Manager
Pete Gaughan

Marketing Manager
Christie Hilbrich

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Debbye Butler

Indexer
Johnna VanHoose Dinse

Cover Designer
Wiley

Cover Image
Courtesy of Derek Molloy

Credits

xiii

Many thanks to everyone at John Wiley & Sons, Inc once again for their exceptional
work on this project: to Jim Minatel for encouraging me to take on the revision
of this book and for supporting the enhancement of a book that engages in
deeper learning; to Devon Lewis for guiding the project forward and for his
expert support and help throughout the development of this book; to Adaobi
Obi Tulton, the project editor, for driving this project to completion in the most
efficient way possible—it was a real pleasure to work with such an accomplished
and adept editor for the third time; to Kim Wimpsett, the copy editor, for trans-
lating this book into readable U.S. English; to Barath Kumar Rajasekaran, the
production editor, for bringing everything together to create a final, polished
product. Thanks to the technical editor, Marcia Wilbur, for her careful review
and constructive feedback on the technical content in this book. Continued
thanks to the technical editors from my previous titles, Tom Betka, Robert Zhu
(Microsoft), and Jason Kridner (BeagleBoard.org Foundation), on whose advice
this work is based. Thanks also to Cathy Wicks (Texas Instruments) for her
advice and support in the development of this book.

Continued thanks to the thousands of people who take the time to com-
ment on my YouTube videos, blog, and website articles. I always appreciate the
feedback, advice, and comments—it has really helped in the development of
the topics in all of my books.

The School of Electronic Engineering at Dublin City University is a great
place to work, largely because of its esprit de corps and its commitment to rig-
orous, innovative, and accessible engineering education. Thanks again to all of
my colleagues in the school for supporting, encouraging, and tolerating me in
the development of this book. Thanks in particular must go to Noel Murphy
and Conor Brennan for sharing the workload of the school executive with me

Acknowledgments

http://www.BeagleBoard.org

xiv Acknowledgments

while I was once again absorbed in a book. Thanks again to (my brother) David
Molloy for his expert software advice and support. Thanks to Jennifer Bruton,
Martin Collier, Pascal Landais, Michele Pringle, Robert Sadleir, Ronan Scaife,
and John Whelan for their ongoing expertise, support, and advice on the var-
ious titles I have written.

The biggest thank-you must of course go to my own family once again. This
revision was written over six months, predominantly at night and on weekends.
Thanks to my wife, Sally, and our children, Daragh, Eoghan, Aidan, and Sarah
for putting up with me (once again) while I was writing this book. Thank you,
Mam, Dad, David, and Catriona for your endless lifelong inspiration, support,
and encouragement. Finally, thank you to my extended family for your continued
support, understanding, and constancy.

xv

Introduction xxix

Part I Beagle Board Basics 1

Chapter 1 The Beagle Hardware Platform 3

Chapter 2 Beagle Software 31

Chapter 3 Exploring Embedded Linux Systems 71

Chapter 4 Interfacing Electronics 139

Chapter 5 Practical Beagle Board Programming 185

Part II Interfacing, Controlling, and Communicating 245

Chapter 6 Interfacing to the Beagle Board Input/Outputs 247

Chapter 7 Cross-Compilation, Eclipse, and Building Linux 307

Chapter 8 Interfacing to the Beagle Board Buses 341

Chapter 9 Interacting with the Physical Environment 401

Chapter 10 Real-Time Interfacing Using External Slave Processors 455

Part III Advanced Beagle Board Systems 495

Chapter 11 The Internet of Things 497

Chapter 12 Wireless Communication and Control 555

Chapter 13 Beagle Board with a Rich User Interface 599

Contents at a Glance

xvi Contents at a Glance

Chapter 14 Images, Video, and Audio 643

Chapter 15 Real-Time Interfacing with the PRU-ICSS 673

Chapter 16 Embedded Kernel Programming 717

Index 745

xvii

Introduction xxix

Part I Beagle Board Basics 1

Chapter 1 The Beagle Hardware Platform 3
Introduction to the Boards 3

Who Should Use the Beagle Platform 6
When to Use Beagle Boards 7
When Should You Not Use the Beagle Boards 7

BeagleBone Documentation 8
The Beagle Hardware 10

BeagleBone Versions 10
The Beagle Hardware 12

Beagle Accessories 19
Highly Recommended Accessories 19

Headers for the PocketBeagle 20
Micro-SD Card (for Booting or Flashing eMMCs) 20
External 5V Power Supply (for Peripherals) 22
Ethernet Cable (for Wired BBB Network Connection) 22
HDMI Cable (for Connection to Monitors/Televisions) 22
USB to Serial UART TTL 3.3 (for Finding Problems) 23

Optional Accessories 24
USB Hub (to Connect Several USB Devices to a USB Host) 25
Micro-HDMI to VGA Adapters (for VGA Video and Sound) 25
Wi-Fi Adapters (for Wireless Networking) 25
USB Webcam (for Capturing Images and Streaming Video) 25
USB Keyboard and Mouse (for General-Purpose Computing) 26

Capes 26
How to Destroy Your Board! 27
Summary 29
Support 29

Contents

xviii Contents

Chapter 2 Beagle Software 31
Linux on the Beagle Boards 32

Linux Distributions for Beagle Boards 32
Create a Linux Micro-SD Card Image 33

Communicating with the Boards 34
Installing Drivers 34
Wired Network Connections 35

Internet-over-USB (All Boards) 36
Regular Ethernet (BBB and BeagleBoard Only) 39
Ethernet Crossover Cable (BBB and BeagleBoard Only) 40

Communicating with Your Board 42
Serial Connection over USB 42
Serial Connection with the USB-to-TTL 3.3 V Cable 43
Connecting Through Secure Shell 44
Secure Shell Connections Using PuTTY 45
Chrome Apps: Secure Shell Client 45
Transferring Files Using PuTTY/psftp over SSH 46

Controlling the Beagle Board 48
Basic Linux Commands 48

First Steps 49
Basic File System Commands 50
Environment Variables 52

Basic File Editing 53
What Time Is It? 54
Package Management 56
Beagle-Specific Commands 58

Expand the File System on an SD Card 59
Update the Kernel 60

Interacting with the On-Board LEDs 61
Shutdown 63

Node.js, Cloud9, and BoneScript 64
Introduction to Node.js 64
Introduction to the Cloud9 IDE 66
Introduction to BoneScript 67

Summary 69
Further Reading 69

Chapter 3 Exploring Embedded Linux Systems 71
Introducing Embedded Linux 72

Advantages and Disadvantages of Embedded Linux 73
Is Linux Open Source and Free? 74
Booting the Beagle Boards 74

Bootloaders 74
Kernel Space and User Space 83
The systemd System and Service Manager 85

Managing Linux Systems 90
The Superuser 90

 Contents xix

System Administration 92
The Linux File System 92
Links to Files and Directories 94
Users and Groups 95
File System Permissions 98
The Linux Root Directory 102
Commands for File Systems 103
The Reliability of SD Card/eMMC File Systems 111

Linux Commands 113
Output and Input Redirection (>, >>, and <) 113
Pipes (| and tee) 114
Filter Commands (from sort to xargs) 115
echo and cat 117
diff 118
tar 119
md5sum 120

Linux Processes 121
How to Control Linux Processes 121
Foreground and Background Processes 122

Other Linux Topics 124
Using Git for Version Control 124

A Practice-Based Introduction 126
Cloning a Repository (git clone) 126
Getting the Status (git status) 128
Adding to the Staging Area (git add) 128
Committing to the Local Repository (git commit) 129
Pushing to the Remote Repository (git push) 129

Git Branching 130
Creating a Branch (git branch) 130
Merging a Branch (git merge) 132
Deleting a Branch (git branch -d) 132

Common Git Commands 133
Desktop Virtualization 134
Code for This Book 135
Summary 136
Further Reading 136
Bibliography 137

Chapter 4 Interfacing Electronics 139
Analyzing Your Circuits 140

Digital Multimeter 140
Oscilloscopes 141

Basic Circuit Principles 143
Voltage, Current, Resistance, and Ohm’s Law 143
Voltage Division 145
Current Division 146

xx Contents

Implementing Circuits on a Breadboard 147
Digital Multimeters and Breadboards 149
Example Circuit: Voltage Regulation 150

Discrete Components 152
Diodes 152
Light-Emitting Diodes 153
Smoothing and Decoupling Capacitors 156
Transistors 158

Transistors as Switches 159
Field Effect Transistors as Switches 162

Optocouplers/Optoisolators 164
Switches and Buttons 166

Hysteresis 168
Logic Gates 169

Floating Inputs 173
Pull-Up and Pull-Down Resistors 173
Open-Collector and Open-Drain Outputs 174
Interconnecting Gates 175

Analog-to-Digital Conversion 177
Sampling Rate 177
Quantization 178
Operational Amplifiers 178

Ideal Operational Amplifiers 178
Negative Feedback and Voltage Follower 181
Positive Feedback 181

Concluding Advice 182
Summary 182
Further Reading 183

Chapter 5 Practical Beagle Board Programming 185
Introduction 186

Performance of Different Languages 186
Setting the CPU Frequency 190

Scripting Languages 192
Scripting Language Options 192
Bash 193
Lua 196
Perl 197
Python 198

Dynamically Compiled Languages 201
JavaScript and Node.js on the Beagle boards 201
Java on the Beagle Boards 203

C and C++ on the Beagle Boards 207
C and C++ Language Overview 210

Compiling and Linking 211
Writing the Shortest C/C++ Program 213
Static and Dynamic Compilation 215
Variables and Operators in C/C++ 215

 Contents xxi

Pointers in C/C++ 219
C-Style Strings 221

LED Flashing Application in C 223
The C of C++ 224

First Example and Strings in C++ 225
Passing by Value, Pointer, and Reference 226
Flashing the LEDs Using C++ (non-OO) 227

Writing a Multicall Binary 228
Overview of Object-Oriented Programming 229

Classes and Objects 229
Encapsulation 230
Inheritance 231
Object-Oriented LED Flashing Code 233

Interfacing to the Linux OS 236
Glibc and Syscall 237

Improving the Performance of Python 239
Cython 239
Boost.Python 242

Summary 244
Further Reading 244
Bibliography 244

Part II Interfacing, Controlling, and Communicating 245

Chapter 6 Interfacing to the Beagle Board Input/Outputs 247
General-Purpose Input/Outputs 248

Introduction to GPIO Interfacing 248
GPIO Digital Output 250
GPIO Digital Input 255
GPIO Configuration 257

Internal Pull-Up and Pull-Down Resistors 258
GPIO Pin Configuration Settings 258

Interfacing to Powered DC Circuits 265
C++ Control of GPIOs 267

The Linux Device Tree 271
Flattened Device Tree on the Beagle Boards 272
Modifying a Board Device Tree 276
Boot Configuration Files 278

Analog Inputs and Outputs 280
Analog Inputs 280

Enabling the Analog Inputs 280
Analog Input Application—A Simple Light Meter 282

Analog Outputs (PWM) 285
Output Application—Controlling a Servo Motor 289

BoneScript 290
Digital Read and Write 290
Analog Read 292

xxii Contents

Analog Write (PWM) 293
GPIO Performance 294

Advanced GPIO Topics 295
More C++ Programming 295

Callback Functions 295
POSIX Threads 297
Linux poll (sys/poll.h) 298

Enhanced GPIO Class 299
Using GPIOs without Using sudo 302
Root Permissions with setuid 304

Summary 306
Further Reading 306

Chapter 7 Cross-Compilation, Eclipse, and Building Linux 307
Setting Up a Cross-Compilation Toolchain 308

Cross-Compiling Under Debian 309
Testing the Toolchain 311
Emulating the armhf Architecture 312
Cross-Compilation with Third-Party Libraries (Multiarch) 314

Cross-Compilation Using Eclipse 315
Installing Eclipse on Desktop Linux 315
Configuring Eclipse for Cross-Compilation 316
Remote System Explorer 318
Integrating GitHub into Eclipse 322
Remote Debugging 322
Automatic Documentation (Doxygen) 328

Adding Doxygen Editor Support in Eclipse 330
Cross-Building Linux 330

Downloading the Kernel Source 331
Building the Linux Kernel 332
Building a Poky Linux Distribution (Advanced) 335

Summary 340

Chapter 8 Interfacing to the Beagle Board Buses 341
Introduction to Bus Communication 342
I2C 343

I2C Hardware 343
I2C on the Beagle Boards 344
I2C Devices on the Beagle Boards 345

An I2C Test Circuit 346
A Real-Time Clock 346
The ADXL345 Accelerometer 347
Wiring the Test Circuit 348

Using Linux I2C-Tools 348
i2cdetect 348
i2cdump 349
i2cget 353
i2cset 354

 Contents xxiii

I2C Communication in C 356
Wrapping I2C Devices with C++ Classes 358

SPI 360
SPI Hardware 361
SPI on the Beagle Boards 363

Testing an SPI Bus 363
A First SPI Application (74HC595) 365

Wiring the 74HC595 Circuit 366
SPI Communication Using C 367

Bidirectional SPI Communication in C/C++ 370
The ADXL345 SPI Interface 370
Connecting the ADXL345 to the Beagle Boards 372
Wrapping SPI Devices with C++ Classes 373
Three-Wire SPI Communication 375

Multiple SPI Slave Devices 376
UART 377

The Beagle Board UART 378
UART Examples in C 380

Beagle Board Serial Client 381
LED Serial Server 383

UART Applications: GPS 386
CAN Bus 388

Beagle Board CAN Bus 389
SocketCAN 390
A CAN Bus Test Circuit 392
Linux CAN-utils 393
A SocketCAN C Example 394

Logic-Level Translation 396
Summary 398
Further Reading 399

Chapter 9 Interacting with the Physical Environment 401
Interfacing to Actuators 402

DC Motors 403
Driving Small DC Motors (up to 1.5 A) 406
Controlling a DC Motor Using sysfs 407
Driving Larger DC Motors (Greater Than 1.5 A) 409
Controlling a DC Motor Using C++ 411

Stepper Motors 412
The EasyDriver Stepper Motor Driver 413
A Beagle Board Stepper Motor Driver Circuit 414
Controlling a Stepper Motor Using C++ 415

Relays 417
Interfacing to Analog Sensors 418

Protecting the ADC Inputs 420
Diode Clamping 421
Op-Amp Clamping 422

xxiv Contents

Analog Sensor Signal Conditioning 427
Scaling Using Voltage Division 427
Signal Offsetting and Scaling 428

Analog Interfacing Examples 431
Infrared Distance Sensing 431
ADXL335 Conditioning Example 436

Interfacing to Local Displays 438
MAX7219 Display Modules 438
Character LCD Modules 441

Building C/C++ Libraries 445
Makefiles 446
CMake 447

A Hello World Example 448
Building a C/C++ Library 449
Using a Shared (.so) or Static (.a) Library 452

Summary 453
Further Reading 454

Chapter 10 Real-Time Interfacing Using External Slave Processors 455
Real-Time Beagle Board 456

Real-Time Kernels 456
Real-Time Hardware Solutions 458

Extended GPIO Availability 458
The MCP23017 and the I2C Bus 460

Controlling the GPIO LED Circuit 461
Reading the GPIO Button State 462
An Interrupt Configuration Example (Advanced) 463

The MCP23S17 and the SPI Bus 464
A C++ Class for the MCP23x17 Devices 465

Adding External UARTs 468
The Arduino 471

An Arduino Serial Slave 474
A UART Echo Test Example 475
UART Command Control of an Arduino 478

An Arduino I2C Slave 481
An I2C Test Circuit 481
I2C Register Echo Example 482
I2C Temperature Sensor Example 484
I2C Temperature Sensor with a Warning LED 486
Arduino Slave Communication Using C/C++ 488
An I2C Ultrasonic Sensor Application 490

Summary 493
Further Reading 493

Part III Advanced Beagle Board Systems 495

Chapter 11 The Internet of Things 497
The Internet of Things 498
A Beagle Board IoT Sensor 499
The Beagle Board as a Sensor Web Server 501

 Contents xxv

Installing and Configuring a Web Server 502
Configuring the Apache Web Server 503
Creating Web Pages and Web Scripts 503
PHP on the Beagle Board 506

GNU Cgicc Applications (Advanced) 508
Replacing Bone101 with Apache 511

A C/C++ Web Client 512
Network Communications Primer 513
A C/C++ Web Client 514
Secure Communication Using OpenSSL 516

A Beagle Board as a “Thing” 518
ThingSpeak 518
The Linux Cron Scheduler 521

System crontab 521
User crontab 523

Sending E-mail from the Beagle Board 524
If This Then That 526

IoT Frameworks 528
MQ Telemetry Transport 529

MQTT Server/Broker 531
MQTT Publisher/Subscriber on a Beagle Board 533
The mqtt-spy Debug Tool 534

Writing MQTT Code 535
A Paho MQTT Publisher Example 535
A Paho MQTT Subscriber Example 537

Adafuit IO 539
Configuring the Adafruit IO Account 540
Connecting to Adafruit IO with MQTT 542
An MQTT Node.js Publish Example 543

The C++ Client/Server 545
IoT Device Management 548

Remote Monitoring of a Beagle Board 548
Beagle Board Watchdog Timers 549
Static IP Addresses 551
Power over Ethernet 551

PoE Power Extraction Modules (Advanced Topic) 553
Summary 554

Chapter 12 Wireless Communication and Control 555
Introduction to Wireless Communications 556
Bluetooth Communications 557

Installing a Bluetooth Adapter 558
Checking the LKM 559
Configuring a Bluetooth Adapter 560
Making the Beagle Board Discoverable 561

Android App Development with Bluetooth 563
Wi-Fi Communications 564

Installing a Wi-Fi Adapter 564

xxvi Contents

The NodeMCU Wi-Fi Slave Processor 568
Flashing with the Latest Firmware 569
Connecting the NodeMCU to Wi-Fi 570
Programming the NodeMCU 571
The NodeMCU Web Server Interface 574
JSON 575
The NodeMCU and MQTT 577

ZigBee Communications 579
Introduction to XBee Devices 579

AT versus API Mode 581
XBee Configuration 582

XCTU 582
Configuring an XBee Network Using XCTU 583

An XBee AT Mode Example 584
Setting Up the Arduino XBee Device (XBeeA) 584
Setting Up the PocketBeagle XBee Device (XBeePB) 586

An XBee API Mode Example 589
Setting Up the PocketBeagle XBee Device (XBee1) 589
Setting Up the Stand-Alone XBee Device (XBee2) 589
XBee API Mode and Node.js 590
XBee and C/C++ 592

Near Field Communication 593
Summary 596

Chapter 13 Beagle Board with a Rich User Interface 599
Rich UI Beagle Board Architectures 600

Beagle Boards as General-Purpose Computers 601
Connecting a Bluetooth Input Peripheral 603

BeagleBone with a LCD Touchscreen Cape 604
Virtual Network Computing 605

VNC Using VNC Viewer 605
VNC with Xming and PuTTY 606
VNC with a Linux Desktop Computer 607

Fat-Client Applications 608
Rich UI Application Development 608

Introduction to GTK+ on the Beagle Boards 609
The “Hello World” GTK+ Application 609
The Event-Driven Programming Model 610
The GTK+ Temperature Application 611

Introduction to Qt for the Beagle Board 612
Installing Qt Development Tools 613
The “Hello World” Qt Application 613

Qt Primer 615
Qt Concepts 615

The QObject Class 617
Signals and Slots 617

Qt Development Tools 618

 Contents xxvii

A First Qt Creator Example 620
A Qt Temperature Sensor GUI Application 621

Remote UI Application Development 625
Fat-Client Qt GUI Application 626
Multithreaded Server Applications 629
A Multithreaded Temperature Service 632

Parsing Stream Data 634
The Fat Client as a Server 635

Parsing Stream Data with XML 638
The Beagle Board Client Application 639

Summary 641
Further Reading 641

Chapter 14 Images, Video, and Audio 643
Capturing Images and Video 644

USB Webcams 644
Video4Linux2 (V4L2) 646

Image Capture Utility 647
Video4Linux2 Utilities 648
Writing Video4Linux2 Programs 650

Streaming Video 652
Image Processing and Computer Vision 654

Image Processing with OpenCV 654
Computer Vision with OpenCV 656
Boost 659

BeagleBone Audio 660
Core Audio Software Tools 661
Audio Devices for the Beagle Boards 661

HDMI and USB Audio Playback Devices 661
Internet Radio Playback 664
Recording Audio 664
Audio Network Streaming 666
Bluetooth A2DP Audio 666

Text-to-Speech 669
Summary 670
Further Reading 670

Chapter 15 Real-Time Interfacing with the PRU-ICSS 673
The PRU-ICSS 674

The PRU-ICSS Architecture 674
The Remote Processor Framework 675
Important Documents 676

Development Tools for the PRU-ICSS 676
The PRU Code Generation Tools 677
The PRU Debugger 677

Using the AM335x PRU-ICSS 679
Setting Up the Board for Remoteproc 679
Testing Remoteproc under Linux 680

xxviii Contents

A First PRU Example 683
PRU-ICSS Enhanced GPIOs 683
A First PRU Program 686

A First PRU Program in C 686
A First PRU Program in Assembly 688

The PRU-ICSS in Detail 691
Registers 691
Local and Global Memory 692
PRU Assembly Instruction Set 696

PRU-ICSS Applications 698
PRU-ICSS Performance Tests 698
Utilizing Regular Linux GPIOs 702
A PRU PWM Generator 704
A PRU Sine Wave Generator 708
An Ultrasonic Sensor Application 709

Summary 714
Further Reading 714

Chapter 16 Embedded Kernel Programming 717
Introduction 718

Why Write Kernel Modules? 718
Loadable Kernel Module Basics 719

A First LKM Example 720
The LKM Makefile 722
Building the LKM on a Beagle Board 723
Testing the First LKM Example 724

Testing the LKM Parameter 726
An Embedded LKM Example 727

Interrupt Service Routines 729
Performance 733

Enhanced Button GPIO Driver LKM 733
The kobject Interface 734

Enhanced LED GPIO Driver LKM 741
Kernel Threads 742

Conclusions 744
Summary 744

Index 745

xxix

The Beagle platform continues to amaze! Given the proliferation of smartphones,
the idea of holding in one hand a computer that is capable of performing two
billion instructions per second is easy to take for granted—but the fact that you
can modify the hardware and software of such small yet powerful devices and
adapt them to suit your own needs and create your own inventions is nothing
short of amazing. Even better, you can purchase a board for as little as $25 in
the form of a PocketBeagle.

The Beagle boards on their own are too complex to be used by a general
audience; it is the capability of the boards to run Linux that makes the resulting
platform accessible, adaptable, and powerful. Together, Linux and embedded
systems enable ease of development for devices that can meet future challenges
in smart buildings, the Internet of Things (IoT), robotics, smart energy, smart
cities, human-computer interaction (HCI), cyber-physical systems, 3D printing,
smart manufacturing, interactive art, advanced vehicular systems, and many,
many more applications.

The integration of high-level Linux software and low-level electronics repre-
sents a paradigm shift in embedded systems development. It is revolutionary
that you can build a low-level electronics circuit and then install a Linux web
server, using only a few short commands, so that the circuit can be controlled
over the internet. You can easily use a Beagle board as a general-purpose Linux
computer, but it is vastly more challenging and interesting to get underneath
the hood and fully interface it to electronic circuits of your own design—and
that is where this book comes in!

This book should have widespread appeal for inventors, makers, students,
entrepreneurs, hackers, artists, dreamers—in short, anybody who wants to bring
the power of embedded Linux to his or her products, inventions, creations, or
projects and truly understand the Beagle platform in detail. This is not a recipe

Introduction

xxx Introduction

book—with few exceptions, everything demonstrated here is explained at a
level that will enable you to design, build, and debug your own extensions of
the concepts presented here. Nor is there any grand design project at the end
of this book for which you must purchase a prescribed set of components and
peripherals to achieve a specific outcome. Rather, this book is about providing
you with enough background knowledge and “under-the-hood” technical details
to enable and motivate your own explorations.

I strongly believe in learning by doing, so I present examples using low-cost,
widely available hardware so that you can follow along. Using these hands-on
examples, I describe what each step means in detail so that when you substitute
your own hardware components, modules, and peripherals you will be able to
adapt the content in this book to suit your needs. As for that grand project or
invention—that is left up to you and your imagination!

When writing this book, I had the following aims and objectives:

 ■ To explain embedded Linux and its interaction with electronic circuits—
taking you through the topics from mystery to mastery!

 ■ To provide in-depth information and instruction on the Linux, electronics,
and programming skills that are required to master a pretty wide and
comprehensive variety of topics in this domain.

 ■ To create a collection of practical “Hello World” hardware and software
examples on each and every topic in the book, from low-level interfacing,
general-purpose input/outputs (GPIOs), analog-to-digital converters (ADCs),
buses, and UARTs, to high-level libraries such as OpenCV, Qt, and com-
plex and powerful topics, such as real-time interfacing with the PRU-ICSS,
and Linux kernel programming.

 ■ To ensure that each circuit and segment of code is specifically designed
to work with a Beagle board. Every circuit and code example in this book
was built and tested on the BeagleBone Black wireless and PocketBeagle
boards.

 ■ To use the “Hello World” examples to build a library of code that you can
use and adapt for your own Beagle projects.

 ■ To make all of the code available on GitHub in an easy-to-use form.

 ■ To support this book with strong digital content, such as the videos on
the DerekMolloyDCU YouTube channel, and a custom website, www.explor-
ingbeaglebone.com.

 ■ To ensure that by the end of this book you have everything you need to
imagine, create, and build advanced Beagle board projects.

http://www.exploringbeaglebone.com
http://www.exploringbeaglebone.com

 Introduction xxxi

I wrote this second edition because of the popularity of the first edition of
Exploring BeagleBone. The number of pages in this edition is more than 20 percent
of the first edition, increased to include the following major additions:

 ■ Full coverage of new Beagle boards, with a particular emphasis on the
PocketBeagle and BeagleBone Black wireless boards

 ■ Updated content to account for all recent changes to the Linux kernel and
operating system

 ■ Inclusion of electronics interfacing approaches, such as protection of I/O
pins using optocouplers, the CAN bus, and many additional interfacing
application examples using external I/O circuits

 ■ New work on real-time interfacing using external slave processors, with
a particular emphasis on building I2C digital sensors

 ■ A full account of new Internet of Things (IoT) full-stack frameworks, with
an emphasis on MQTT and interfacing to Adafruit IO

 ■ Full coverage of building wireless sensor networks using technologies
such as Wi-Fi, Bluetooth, NFC, and ZigBee

 ■ A complete rewrite of the PRU-ICSS chapter to account for Texas Instruments’
decision to move away from UIO to Linux Remoteproc

 ■ Inclusion of new work on writing Linux loadable kernel modules (LKMs)

Why the BeagleBone and PocketBeagle?

The Beagle boards are powerful single-board computers (SBCs), and while
there are other SBCs available on the market, such as the Raspberry Pi and Intel
NUC boards, the Beagle platform has one key differentiator—it was built to be
interfaced to! For example, the Beagle board’s microprocessor package even
contains two additional on-chip microcontrollers that can be used for real-time
interfacing—an area in which other Linux SBCs have significant difficulty.

Unlike most other SBCs, the Beagle boards are fully open-source hardware.
The BeagleBoard.org Foundation provides source schematics, hardware layout,
a full bill of materials, and comprehensive technical reference manuals, enabling
you to modify the design of the Beagle platform and integrate it into your own
product. In fact, you can even fork the hardware design onto Upverter (www.
upverter.com) under a Creative Commons Attribution-ShareAlike license (see
tiny.cc/beagle001 for the full schematics). This is a useful feature should you
decide to take your newest invention to market!

http://www.upverter.com
http://www.upverter.com
http://tiny.cc/beagle001
http://www.BeagleBoard.org

xxxii Introduction

How This Book Is Structured

There is no doubt that some of the topics in this book are quite complex—the
Beagle boards are complex devices! However, everything that you need to master
the devices is present in the book within three major parts.

 ■ Part I, “Beagle Board Basics”

 ■ Part II, “Interfacing, Controlling, and Communicating”

 ■ Part III, “Advanced Beagle Board Systems”

In the first part in the book, you learn about the hardware and software of
the Beagle board platform in Chapters 1 and 2 and subsequently gain more
knowledge through these three primer chapters:

 ■ Chapter 3, “Exploring Embedded Linux Systems”

 ■ Chapter 4, “Interfacing Electronics”

 ■ Chapter 5, “Practical Beagle Board Programming”

If you are a Linux expert, electronics wizard, and/or software guru, then feel
free to skip the primer chapters; however, for everyone else, you’ll find a concise
but detailed set of materials to ensure that you gain all the knowledge required
to effectively and safely interface to your Beagle boards.

The second part of the book, Chapters 6 to 10, provides detailed information
on interfacing to the Beagle board GPIOs, analog inputs, buses (I2C, SPI, CAN
bus), UART devices, USB peripherals, and real-time interfacing to slave proces-
sors. You’ll learn how you can configure a cross-compilation environment so
that you can build large-scale software applications. This part also describes
how you can combine hardware and software to provide your board with the
ability to interact effectively with its physical environment.

The final part of the book, Chapters 11 to 16, describes how the Beagle board
can be used for advanced applications such as Internet of Things (IoT); rich user
interfaces; images, video, and audio; real-time interfacing using the PRU-ICSS;
and kernel programming. Along the way you will meet many technologies,
including TCP/IP, ThingSpeak, Adafruit IO, PoE, Wi-Fi, Bluetooth, Zigbee,
RFID, MQTT, cron, Apache, PHP, e-mail, IFTTT, VNC, GTK+, Qt, XML, JSON,
multi-threading, client/server programming, V4L2, video streaming, OpenCV,
Boost, USB audio, Bluetooth A2DP, text-to-speech, and Remoteproc.

Conventions Used in This Book

This book is filled with source code examples and snippets that you can use to
build your own applications. Code and commands are shown as follows:

This is what source code looks like.

 Introduction xxxiii

When presenting work performed in a Linux terminal, it is often necessary
to display both input and output in a single example. A bold type is used to
distinguish the user input from the output. Here’s an example:

debian@ebb:~$ ping www.exploringbeaglebone.com

PING lb1.reg365.net (195.7.226.20) 56(84) bytes of data.

64 bytes from lb1.reg365.net (195.7.226.20): icmp_req=1 ttl=55 time=25.6 ms

64 bytes from lb1.reg365.net (195.7.226.20): icmp_req=2 ttl=55 time=25.6 ms

...

The $ prompt indicates that a regular Linux user is executing a command,
and a # prompt indicates that a Linux superuser is executing a command. The
ellipsis symbol (...) is used whenever code or output not vital to understanding
a topic has been cut. I’ve edited the output like this to enable you to focus on
only the most useful information. You are encouraged to repeat the steps in
this book yourself, whereupon you will see the full output. In addition, the full
source code for all examples is provided along with the book.

There are some additional styles in the text. Here are some examples:

 ■ New terms and important words appear in italics when introduced.

 ■ Keyboard strokes appear like this: Ctrl+C.

 ■ All URLs in the book appear in this font: www.exploringbeaglebone.com.

 ■ A URL-shortening service is used to create aliases for long URLs that are
presented in the book. These aliases have the form tiny.cc/beagle102
(e.g., link 2 in Chapter 1). Should the link address change after this book
is published, the alias will be updated.

There are several features used in this book to identify when content is of
particular importance or when additional information is available.

 WA R N I N G This type of feature contains important information that can help you
avoid damaging your Beagle board.

 N OT E This type of feature contains useful additional information, such as links
to digital resources and useful tips, which can make it easier to understand the task
at hand.

FEATURE TITLE

This type of feature goes into detail about the current topic or a related topic.

http://www.exploringbeaglebone.com
http://tiny.cc/beagle102

xxxiv Introduction

What You’ll Need

Ideally you should have a Beagle board before you begin reading this book so
that you can follow along with the numerous examples in the text. If you do
not yet have a board, it would be worth reading Chapter 1 before placing an
order. Currently the board is manufactured by both CircuitCo and Embest—the
boards from either manufacturer are compatible with the designs and oper-
ations in this book. You can purchase one of the boards in the United States
from online stores such as Adafruit Industries, Digi-Key, Mouser, SparkFun,
and Jameco Electronics. They are available internationally from stores such as
Farnell, Radionics, Watterott, and Tigal.

A full list of recommended and optional accessories for the Beagle platform is
provided in Chapter 1. In addition, each chapter contains a list of the electronics
components and modules required if you want to follow along with the text. The
book website provides details about where these components can be acquired.

Errata

I have worked really hard to ensure that this book is error free; however, it is
always possible that something was overlooked. A full list of errata is available
on each chapter’s web page at the companion website. If you find any errors in
the text or in the source code examples, I would be grateful if you could send
the errors using the companion website so that I can update the web page errata
list and the source code examples in the code repository.

Digital Content and Source Code

The primary companion site for this book is www.exploringbeaglebone.com.
It contains videos, source code examples, and links to further reading. Each
chapter has its own individual web page. In the unlikely event that this website is
unavailable, you can find the code at www.wiley.com/go/exploringbeaglebone2e.

All the source code is available through GitHub, which allows you to down-
load the code to your Beagle board with one command. You can also easily view
the code online at tiny.cc/beagle002. Downloading the source code to your
board is as straightforward as typing the following at the Linux shell prompt:

debian@ebb:$ git clone https://github.com/derekmolloy/exploringbb.git

If you have never used Git before, don’t worry—it is explained in detail in
Chapter 3. Now, on with the adventures!

http://www.exploringbeaglebone.com
http://www.wiley.com/go/exploringbeaglebone2e
http://tiny.cc/beagle002

Par t

I

In This Part

Chapter 1: The Beagle Hardware Platform
Chapter 2: Beagle Software
Chapter 3: Exploring Embedded Linux Systems
Chapter 4: Interfacing Electronics
Chapter 5: Practical Beagle Board Programming

Beagle Board Basics

C H A P T E R

3

1

The Beagle Hardware Platform

In this chapter, you are introduced to the BeagleBone platform hardware and
its variant boards. The chapter focuses in particular on the BeagleBone and
PocketBeagle boards and the various subsystems and physical inputs/outputs
of these boards. In addition, the chapter lists accessories that can be helpful in
developing your own Beagle-based projects. By the end of this chapter, you
should have an appreciation of the power and complexity of this computing
platform. You should also be aware of the first steps to take to protect your
boards from physical damage.

Introduction to the Boards

Beagle boards are compact, low-cost, open-source Linux computing platforms
that can be used to build complex applications that interface high-level soft-
ware and low-level electronic circuits. These are ideal platforms for prototyping
project and product designs that take advantage of the power and freedom of
Linux, combined with direct access to input/output pins and buses, allowing

4 Part I ■ Beagle Board Basics

you to interface with electronics components, modules, and USB devices. The
following are some characteristics of the single-board computing (SBC) boards:

 ■ They are powerful, containing a processor that can perform up to 2 billion
instructions per second.

 ■ They are widely available at relatively low-cost, as little as $25–$90 depend-
ing on the board chosen.

 ■ They support many standard interfaces for electronics devices.

 ■ They use little power, running at between 1 W (idle) and 2.3 W (peak).

 ■ They are expandable through the use of daughter boards and USB devices.

 ■ They are strongly supported by a huge community of innovators and
enthusiasts.

 ■ They are open-hardware and support open-software tools and applica-
tions for commercial and noncommercial applications.

The BeagleBone and PocketBeagle boards run the Linux operating system,
which means you can use many open-source software libraries and applica-
tions directly with them. Open-source software driver availability also enables
you to interface devices such as USB cameras, keyboards and Wi-Fi adapters
with your project, without having to source proprietary alternatives. Therefore,
you have access to comprehensive libraries of code that have been built by a
talented open-source community; however, it is important to remember that
the code typically comes without any type of warranty or guarantee. If there
are problems, then you have to rely on the good nature of the community to
resolve them. Of course, you could also fix the problems yourself and make the
solutions publicly available.

 N OT E The BeagleBone and PocketBeagle boards are quite different in physical
appearance, as displayed in Figure 1-1, but they are similar devices under the hood.
To illustrate this, both boards are typically booted with the same Linux image on a
micro-SD card. The Linux image will automatically detect and configure the differing
hardware during the boot sequence depending on the board it is booting.

The BeagleBoard.org Foundation is a U.S. nonprofit corporation that aims to
provide embedded systems education in open-source hardware and software.
Over the last ten years, the Foundation has developed high-quality boards that
are renowned in the open-source community for their detailed documentation,
for their extensive support, and for providing a strong bridge between idea
prototyping and commercial product design.

The platform boards are formed by the integration of a high-performance
microprocessor on a printed circuit board (PCB) and an extensive soft-
ware ecosystem. The physical PCB is not a complete product; rather, it is a

http://www.BeagleBoard.org

