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xxix

The Beagle platform continues to amaze! Given the proliferation of smartphones, 
the idea of holding in one hand a computer that is capable of performing two 
billion instructions per second is easy to take for granted—but the fact that you 
can modify the hardware and software of such small yet powerful devices and 
adapt them to suit your own needs and create your own inventions is nothing 
short of amazing. Even better, you can purchase a board for as little as $25 in 
the form of a PocketBeagle.

The Beagle boards on their own are too complex to be used by a general 
audience; it is the capability of the boards to run Linux that makes the resulting 
platform accessible, adaptable, and powerful. Together, Linux and embedded 
systems enable ease of development for devices that can meet future challenges 
in smart buildings, the Internet of Things (IoT), robotics, smart energy, smart 
cities, human-computer interaction (HCI), cyber-physical systems, 3D printing, 
smart manufacturing, interactive art, advanced vehicular systems, and many, 
many more applications.

The integration of high-level Linux software and low-level electronics repre-
sents a paradigm shift in embedded systems development. It is revolutionary 
that you can build a low-level electronics circuit and then install a Linux web 
server, using only a few short commands, so that the circuit can be controlled 
over the internet. You can easily use a Beagle board as a general-purpose Linux 
computer, but it is vastly more challenging and interesting to get underneath 
the hood and fully interface it to electronic circuits of your own design—and 
that is where this book comes in!

This book should have widespread appeal for inventors, makers, students, 
entrepreneurs, hackers, artists, dreamers—in short, anybody who wants to bring 
the power of embedded Linux to his or her products, inventions, creations, or 
projects and truly understand the Beagle platform in detail. This is not a recipe 

Introduction



xxx Introduction

book—with few exceptions, everything demonstrated here is explained at a 
level that will enable you to design, build, and debug your own extensions of 
the concepts presented here. Nor is there any grand design project at the end 
of this book for which you must purchase a prescribed set of components and 
peripherals to achieve a specific outcome. Rather, this book is about providing 
you with enough background knowledge and “under-the-hood” technical details 
to enable and motivate your own explorations.

I strongly believe in learning by doing, so I present examples using low-cost, 
widely available hardware so that you can follow along. Using these hands-on 
examples, I describe what each step means in detail so that when you substitute 
your own hardware components, modules, and peripherals you will be able to 
adapt the content in this book to suit your needs. As for that grand project or 
invention—that is left up to you and your imagination!

When writing this book, I had the following aims and objectives:

 ■ To explain embedded Linux and its interaction with electronic circuits—
taking you through the topics from mystery to mastery!

 ■ To provide in-depth information and instruction on the Linux, electronics, 
and programming skills that are required to master a pretty wide and 
comprehensive variety of topics in this domain.

 ■ To create a collection of practical “Hello World” hardware and software 
examples on each and every topic in the book, from low-level interfacing, 
general-purpose input/outputs (GPIOs), analog-to-digital converters (ADCs), 
buses, and UARTs, to high-level libraries such as OpenCV, Qt, and com-
plex and powerful topics, such as real-time interfacing with the PRU-ICSS, 
and Linux kernel programming.

 ■ To ensure that each circuit and segment of code is specifically designed 
to work with a Beagle board. Every circuit and code example in this book 
was built and tested on the BeagleBone Black wireless and PocketBeagle 
boards.

 ■ To use the “Hello World” examples to build a library of code that you can 
use and adapt for your own Beagle projects.

 ■ To make all of the code available on GitHub in an easy-to-use form.

 ■ To support this book with strong digital content, such as the videos on 
the DerekMolloyDCU YouTube channel, and a custom website, www.explor-
ingbeaglebone.com.

 ■ To ensure that by the end of this book you have everything you need to 
imagine, create, and build advanced Beagle board projects.

http://www.exploringbeaglebone.com
http://www.exploringbeaglebone.com
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I wrote this second edition because of the popularity of the first edition of 
Exploring BeagleBone. The number of pages in this edition is more than 20 percent 
of the first edition, increased to include the following major additions:

 ■ Full coverage of new Beagle boards, with a particular emphasis on the 
PocketBeagle and BeagleBone Black wireless boards

 ■ Updated content to account for all recent changes to the Linux kernel and 
operating system

 ■ Inclusion of electronics interfacing approaches, such as protection of I/O 
pins using optocouplers, the CAN bus, and many additional interfacing 
application examples using external I/O circuits

 ■ New work on real-time interfacing using external slave processors, with 
a particular emphasis on building I2C digital sensors

 ■ A full account of new Internet of Things (IoT) full-stack frameworks, with 
an emphasis on MQTT and interfacing to Adafruit IO

 ■ Full coverage of building wireless sensor networks using technologies 
such as Wi-Fi, Bluetooth, NFC, and ZigBee

 ■ A complete rewrite of the PRU-ICSS chapter to account for Texas Instruments’ 
decision to move away from UIO to Linux Remoteproc

 ■ Inclusion of new work on writing Linux loadable kernel modules (LKMs)

Why the BeagleBone and PocketBeagle?

The Beagle boards are powerful single-board computers (SBCs), and while 
there are other SBCs available on the market, such as the Raspberry Pi and Intel 
NUC boards, the Beagle platform has one key differentiator—it was built to be 
interfaced to! For example, the Beagle board’s microprocessor package even 
contains two additional on-chip microcontrollers that can be used for real-time 
interfacing—an area in which other Linux SBCs have significant difficulty.

Unlike most other SBCs, the Beagle boards are fully open-source hardware. 
The BeagleBoard.org Foundation provides source schematics, hardware layout, 
a full bill of materials, and comprehensive technical reference manuals, enabling 
you to modify the design of the Beagle platform and integrate it into your own 
product. In fact, you can even fork the hardware design onto Upverter (www.
upverter.com) under a Creative Commons Attribution-ShareAlike license (see 
tiny.cc/beagle001 for the full schematics). This is a useful feature should you 
decide to take your newest invention to market!

http://www.upverter.com
http://www.upverter.com
http://tiny.cc/beagle001
http://www.BeagleBoard.org
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How This Book Is Structured

There is no doubt that some of the topics in this book are quite complex—the 
Beagle boards are complex devices! However, everything that you need to master 
the devices is present in the book within three major parts.

 ■ Part I, “Beagle Board Basics”

 ■ Part II, “Interfacing, Controlling, and Communicating”

 ■ Part III, “Advanced Beagle Board Systems”

In the first part in the book, you learn about the hardware and software of 
the Beagle board platform in Chapters 1 and 2 and subsequently gain more 
knowledge through these three primer chapters:

 ■ Chapter 3, “Exploring Embedded Linux Systems”

 ■ Chapter 4, “Interfacing Electronics”

 ■ Chapter 5, “Practical Beagle Board Programming”

If you are a Linux expert, electronics wizard, and/or software guru, then feel 
free to skip the primer chapters; however, for everyone else, you’ll find a concise 
but detailed set of materials to ensure that you gain all the knowledge required 
to effectively and safely interface to your Beagle boards.

The second part of the book, Chapters 6 to 10, provides detailed information 
on interfacing to the Beagle board GPIOs, analog inputs, buses (I2C, SPI, CAN 
bus), UART devices, USB peripherals, and real-time interfacing to slave proces-
sors. You’ll learn how you can configure a cross-compilation environment so 
that you can build large-scale software applications. This part also describes 
how you can combine hardware and software to provide your board with the 
ability to interact effectively with its physical environment.

The final part of the book, Chapters 11 to 16, describes how the Beagle board 
can be used for advanced applications such as Internet of Things (IoT); rich user 
interfaces; images, video, and audio; real-time interfacing using the PRU-ICSS; 
and kernel programming. Along the way you will meet many technologies, 
including TCP/IP, ThingSpeak, Adafruit IO, PoE, Wi-Fi, Bluetooth, Zigbee, 
RFID, MQTT, cron, Apache, PHP, e-mail, IFTTT, VNC, GTK+, Qt, XML, JSON, 
multi-threading, client/server programming, V4L2, video streaming, OpenCV, 
Boost, USB audio, Bluetooth A2DP, text-to-speech, and Remoteproc.

Conventions Used in This Book

This book is filled with source code examples and snippets that you can use to 
build your own applications. Code and commands are shown as follows:

This is what source code looks like.
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When presenting work performed in a Linux terminal, it is often necessary 
to display both input and output in a single example. A bold type is used to 
distinguish the user input from the output. Here’s an example:

debian@ebb:~$ ping www.exploringbeaglebone.com

PING lb1.reg365.net (195.7.226.20) 56(84) bytes of data.

64 bytes from lb1.reg365.net (195.7.226.20): icmp_req=1 ttl=55 time=25.6 ms

64 bytes from lb1.reg365.net (195.7.226.20): icmp_req=2 ttl=55 time=25.6 ms

...

The $ prompt indicates that a regular Linux user is executing a command, 
and a # prompt indicates that a Linux superuser is executing a command. The 
ellipsis symbol (...) is used whenever code or output not vital to understanding 
a topic has been cut. I’ve edited the output like this to enable you to focus on 
only the most useful information. You are encouraged to repeat the steps in 
this book yourself, whereupon you will see the full output. In addition, the full 
source code for all examples is provided along with the book.

There are some additional styles in the text. Here are some examples:

 ■ New terms and important words appear in italics when introduced.

 ■ Keyboard strokes appear like this: Ctrl+C.

 ■ All URLs in the book appear in this font: www.exploringbeaglebone.com.

 ■ A URL-shortening service is used to create aliases for long URLs that are 
presented in the book. These aliases have the form tiny.cc/beagle102 
(e.g., link 2 in Chapter 1). Should the link address change after this book 
is published, the alias will be updated.

There are several features used in this book to identify when content is of 
particular importance or when additional information is available.

 WA R N I N G   This type of feature contains important information that can help you 
avoid damaging your Beagle board.

 N OT E   This type of feature contains useful additional information, such as links  
to digital resources and useful tips, which can make it easier to understand the task  
at hand.

FEATURE TITLE

This type of feature goes into detail about the current topic or a related topic.

http://www.exploringbeaglebone.com
http://tiny.cc/beagle102
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What You’ll Need

Ideally you should have a Beagle board before you begin reading this book so 
that you can follow along with the numerous examples in the text. If you do 
not yet have a board, it would be worth reading Chapter 1 before placing an 
order. Currently the board is manufactured by both CircuitCo and Embest—the 
boards from either manufacturer are compatible with the designs and oper-
ations in this book. You can purchase one of the boards in the United States 
from online stores such as Adafruit Industries, Digi-Key, Mouser, SparkFun, 
and Jameco Electronics. They are available internationally from stores such as 
Farnell, Radionics, Watterott, and Tigal.

A full list of recommended and optional accessories for the Beagle platform is 
provided in Chapter 1. In addition, each chapter contains a list of the electronics 
components and modules required if you want to follow along with the text. The 
book website provides details about where these components can be acquired.

Errata

I have worked really hard to ensure that this book is error free; however, it is 
always possible that something was overlooked. A full list of errata is available 
on each chapter’s web page at the companion website. If you find any errors in 
the text or in the source code examples, I would be grateful if you could send 
the errors using the companion website so that I can update the web page errata 
list and the source code examples in the code repository.

Digital Content and Source Code

The primary companion site for this book is www.exploringbeaglebone.com. 
It contains videos, source code examples, and links to further reading. Each 
chapter has its own individual web page. In the unlikely event that this website is 
unavailable, you can find the code at www.wiley.com/go/exploringbeaglebone2e.

All the source code is available through GitHub, which allows you to down-
load the code to your Beagle board with one command. You can also easily view 
the code online at tiny.cc/beagle002. Downloading the source code to your 
board is as straightforward as typing the following at the Linux shell prompt:

debian@ebb:$ git clone https://github.com/derekmolloy/exploringbb.git

If you have never used Git before, don’t worry—it is explained in detail in 
Chapter 3. Now, on with the adventures!

http://www.exploringbeaglebone.com
http://www.wiley.com/go/exploringbeaglebone2e
http://tiny.cc/beagle002


Par t 

I

In This Part

Chapter 1: The Beagle Hardware Platform
Chapter 2: Beagle Software
Chapter 3: Exploring Embedded Linux Systems
Chapter 4: Interfacing Electronics
Chapter 5: Practical Beagle Board Programming

Beagle Board Basics





C H A P T E R

3

1

The Beagle Hardware Platform

In this chapter, you are introduced to the BeagleBone platform hardware and 
its variant boards. The chapter focuses in particular on the BeagleBone and 
PocketBeagle boards and the various subsystems and physical inputs/outputs 
of these boards. In addition, the chapter lists accessories that can be helpful in 
developing your own Beagle-based projects. By the end of this chapter, you 
should have an appreciation of the power and complexity of this computing 
platform. You should also be aware of the first steps to take to protect your 
boards from physical damage.

Introduction to the Boards

Beagle boards are compact, low-cost, open-source Linux computing platforms 
that can be used to build complex applications that interface high-level soft-
ware and low-level electronic circuits. These are ideal platforms for prototyping 
project and product designs that take advantage of the power and freedom of 
Linux, combined with direct access to input/output pins and buses, allowing 
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you to interface with electronics components, modules, and USB devices. The 
following are some characteristics of the single-board computing (SBC) boards:

 ■ They are powerful, containing a processor that can perform up to 2 billion 
instructions per second.

 ■ They are widely available at relatively low-cost, as little as $25–$90 depend-
ing on the board chosen.

 ■ They support many standard interfaces for electronics devices.

 ■ They use little power, running at between 1 W (idle) and 2.3 W (peak).

 ■ They are expandable through the use of daughter boards and USB devices.

 ■ They are strongly supported by a huge community of innovators and 
enthusiasts.

 ■ They are open-hardware and support open-software tools and applica-
tions for commercial and noncommercial applications.

The BeagleBone and PocketBeagle boards run the Linux operating system, 
which means you can use many open-source software libraries and applica-
tions directly with them. Open-source software driver availability also enables 
you to interface devices such as USB cameras, keyboards and Wi-Fi adapters 
with your project, without having to source proprietary alternatives. Therefore, 
you have access to comprehensive libraries of code that have been built by a 
talented open-source community; however, it is important to remember that 
the code typically comes without any type of warranty or guarantee. If there 
are problems, then you have to rely on the good nature of the community to 
resolve them. Of course, you could also fix the problems yourself and make the 
solutions publicly available.

 N OT E   The BeagleBone and PocketBeagle boards are quite different in physical 
appearance, as displayed in Figure 1-1, but they are similar devices under the hood. 
To illustrate this, both boards are typically booted with the same Linux image on a 
micro-SD card. The Linux image will automatically detect and configure the differing 
hardware during the boot sequence depending on the board it is booting.

The BeagleBoard.org Foundation is a U.S. nonprofit corporation that aims to 
provide embedded systems education in open-source hardware and software. 
Over the last ten years, the Foundation has developed high-quality boards that 
are renowned in the open-source community for their detailed documentation, 
for their extensive support, and for providing a strong bridge between idea 
prototyping and commercial product design.

The platform boards are formed by the integration of a high-performance 
microprocessor on a printed circuit board (PCB) and an extensive soft-
ware ecosystem. The physical PCB is not a complete product; rather, it is a  

http://www.BeagleBoard.org

