

Lean Architecture for
Agile Software

Development

James Coplien
Gertrud Bjørnvig

A John Wiley and Sons, Ltd, Publication

This edition first published 2010
© 2010 James Coplien and Gertrud Bjørnvig

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United
Kingdom

For details of our global editorial offices, for customer services and for information about how to apply
for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with
the Copyright, Designs and Patents Act 1988.

Reprinted with corrections December 2010

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior
permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product or
vendor mentioned in this book. This publication is designed to provide accurate and authoritative
information in regard to the subject matter covered. It is sold on the understanding that the publisher
is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Quotes from The Clock of the Long Now: Time and Responsibility – The Ideas Behind the World’s Slowest
Computer are Copyright © 2000 Stewart Brand. Reprinted by permission of Basic Books, a member of
the Perseus Books Group.

A catalogue record for this book is available from the British Library.

ISBN 978-0-470-68420-7

Typeset in 11/13 Palatino by Laserwords Private Limited, Chennai, India.

Printed in Great Britain by TJ International, Padstow, Cornwall

http://www.wiley.com

Dedication

To Trygve Mikkjel Heyerdahl Reenskaug, also a grandfather

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include
the following:

Editorial and Production
VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director – Book Content Management: Martin Tribe
Associate Publisher: Chris Webb
Executive Commissioning Editor: Birgit Gruber
Assistant Editor: Colleen Goldring
Publishing Assistant: Ellie Scott
Project Editor: Juliet Booker
Content Editor: Nicole Burnett
Copy Editor: Richard Walshe

Marketing:
Senior Marketing Manager: Louise Breinholt
Marketing Executive: Kate Batchelor

Composition Services:
Compositor: Laserwords Private Limited, Chennai, India
Proof Reader: Alex Grey
Indexer: Annette Musker

Contents

About the Authors xii
Preface xiii

1 Introduction 1
1.1 The Touchstones: Lean and Agile 1
1.2 Lean Architecture and Agile Feature Development 4
1.3 Agile Production 7

1.3.1 Agile Builds on Lean 7
1.3.2 The Scope of Agile Systems 8
1.3.3 Agile and DCI 9

1.4 The Book in a Very Small Nutshell 10
1.5 Lean and Agile: Contrasting and Complementary 11

1.5.1 The Lean Secret 14
1.6 Lost Practices 14

1.6.1 Architecture 15
1.6.2 Handling Dependencies between Requirements 15
1.6.3 Foundations for Usability 16
1.6.4 Documentation 16

Code Does Not Stand Alone 17
Capturing the ‘‘Why’’ 19

1.6.5 Common Sense, Thinking, and Caring 19
1.7 What this Book is Not About 21
1.8 Agile, Lean – Oh, Yeah, and Scrum and Methodologies and Such 22
1.9 History and Such 24

2 Agile Production in a Nutshell 27
2.1 Engage the Stakeholders 27
2.2 Define the Problem 29
2.3 Focusing on What the System Is: The Foundations of Form 30
2.4 Focusing on What the System Does: The System Lifeblood 32
2.5 Design and Code 33
2.6 Countdown: 3, 2, 1. . . 34

v

vi Contents

3	 35Stakeholder Engagement
3.1 The Value Stream	 35

3.1.1	 End Users and Other Stakeholders as Value Stream Anchors 36

3.1.2	 Architecture in the Value Stream 37

3.1.3	 The Lean Secret 38

3.2 The Key Stakeholders	 41

3.2.1	 End Users 43

Psyching Out the End Users 44

Don’t Forget Behavior 46

The End User Landscape 47

3.2.2	 The Business 47

A Special Note for Managers 48

3.2.3	 Customers 50

. . . As Contrasted with End Users 50

‘‘Customers’’ in the Value Stream 52

3.2.4	 Domain Experts 52

No Ivory Tower Architects 53

Experts in Both Problem and Solution Domains 54

3.2.5	 Developers and Testers 55

3.3 Process Elements of Stakeholder Engagement	 57

3.3.1	 Getting Started 58

3.3.2	 Customer Engagement 60

3.4 The Network of Stakeholders: Trimming Wasted Time 61

3.4.1	 Stovepipe Versus Swarm 61

3.4.2	 The First Thing You Build 64

3.4.3	 Keep the Team Together 65

3.5 No Quick Fixes, but Some Hope	 66

4 Problem Definition	 67

4.1 What’s Agile about Problem Definitions?	 68

4.2 What’s Lean about Problem Definitions?	 68

4.3 Good and Bad Problem Definitions	 70

4.4 Problems and Solutions	 72

4.5 The Process Around Problem Definitions	 73

4.5.1	 Value the Hunt Over the Prize 73

4.5.2	 Problem Ownership 74

4.5.3	 Creeping Featurism 75

4.6 Problem Definitions, Goals, Charters, Visions, and Objectives 76

4.7 Documentation?	 77

5 What the System Is, Part 1: Lean Architecture	 79

5.1 Some Surprises about Architecture	 80

5.1.1	 What’s Lean about This? 82

Deliberation and ‘‘Pull’’ 83

Failure-Proof Constraints or Poka-Yoke 83

The Lean Mantras of Conservation, Consistency, and Focus 84

5.1.2	 What’s Agile about Architecture? 84

It’s All About Individuals and Interactions 84

Contents vii

Past Excesses 85

Dispelling a Couple of Agile Myths 86

5.2 The First Design Step: Partitioning	 88

5.2.1	 The First Partition: Domain Form Versus Behavioral Form 89

5.2.2	 The Second Partitioning: Conway’s Law 90

5.2.3	 The Real Complexity of Partitioning 93

5.2.4	 Dimensions of Complexity 94

5.2.5	 Domains: A Particularly Interesting Partitioning 94

5.2.6	 Back to Dimensions of Complexity 96

5.2.7	 Architecture and Culture 100

5.2.8	 Wrap-Up on Conway’s Law 100

5.3 The Second Design Step: Selecting a Design Style	 100

5.3.1	 Contrasting Structuring with Partitioning 102

5.3.2	 The Fundamentals of Style: Commonality and Variation 104

5.3.3	 Starting with Tacit Commonality and Variation 105

5.3.4	 Commonality, Variation, and Scope 108

5.3.5	 Making Commonalities and Variations Explicit 111

Commonality Categories 112

Next Steps 114

5.3.6	 The Most Common Style: Object Orientation 114

Just What is Object Orientation? 115

5.3.7	 Other Styles within the Von Neumann World 117

5.3.8	 Domain-Specific Languages and Application Generators 120

The State of the Art in DSLs 121

DSLs’ Place in Architecture 121

5.3.9	 Codified Forms: Pattern Languages 122

5.3.10 Third-Party Software and Other Paradigms	 124

5.4 Documentation?	 127

5.4.1	 The Domain Dictionary 128

5.4.2	 Architecture Carryover 128

5.5 History and Such	 129

6 What the System Is, Part 2: Coding It Up	 131

6.1 The Third Step: The Rough Framing of the Code	 131

6.1.1	 Abstract Base Classes 133

6.1.2	 Pre-Conditions, Post-Conditions, and Assertions 137

Static Cling 142

6.1.3	 Algorithmic Scaling: The Other Side of Static Assertions 144

6.1.4	 Form Versus Accessible Services 146

6.1.5	 Scaffolding 147

6.1.6	 Testing the Architecture 149

Usability Testing 149

Architecture Testing 149

6.2 Relationships in Architecture	 153

6.2.1	 Kinds of Relationship 153

6.2.2	 Testing the Relationships 155

6.3 Not Your Old Professor’s OO	 155

6.4 How much Architecture?	 159

viii	 Contents

6.4.1	 Balancing BUFD and YAGNI 159

6.4.2	 One Size Does Not Fit All 160

6.4.3	 When Are You Done? 160

6.5 Documentation?	 162

6.6 History and Such	 163

7 What the System Does: System Functionality	 165

7.1 What the System Does	 166

7.1.1	 User Stories: A Beginning 166

7.1.2	 Enabling Specifications and Use Cases 167

7.1.3	 Helping Developers, Too 169

7.1.4	 Your Mileage may Vary 170

7.2 Who is Going to Use Our Software?	 171

7.2.1	 User Profiles 171

7.2.2	 Personas 171

7.2.3	 User Profiles or Personas? 172

7.2.4	 User Roles and Terminology 173

7.3 What do the Users Want to Use Our Software for?	 173

7.3.1	 Feature Lists 173

7.3.2	 Dataflow Diagrams 174

7.3.3	 Personas and Scenarios 174

7.3.4	 Narratives 174

7.3.5	 Behavior-Driven Development 175

7.3.6	 Now that We’re Warmed Up. . . 175

Prototypes 176

Towards Foundations for Decisions 176

Known and Unknown Unknowns 176

Use Cases as a Decision Framework 177

7.4 Why Does the User Want to Use Our Software?	 177

7.5 Consolidation of What the System Does	 178

7.5.1	 The Helicopter View 181

Habits: The Developer View and the User View 182

Trimming the Scope 185

7.5.2	 Setting the Stage 186

7.5.3	 Play the Sunny Day Scenario 187

Business Rules 191

7.5.4	 Add the Interesting Stuff 193

7.5.5	 Use Cases to Roles 200

Roles from the Use Case 201

Bridging the Gap between the Business and the Programmer 202

7.6 Recap	 203

7.6.1	 Support the User’s Workflow 203

7.6.2	 Support Testing Close to Development 203

7.6.3	 Support Efficient Decision-Making about Functionality 204

7.6.4	 Support Emerging Requirements 204

7.6.5	 Support Release Planning 204

7.6.6	 Support Sufficient Input to the Architecture 205

7.6.7	 Support the Team’s Understanding of What to Develop 205

ix Contents

7.7	 ‘‘It Depends’’: When Use Cases are a Bad Fit 206

7.7.1	 Classic OO: Atomic Event Architectures 206

7.8	 Usability Testing 208

7.9	 Documentation? 209

7.10 History and Such	 211

8	 Coding It Up: Basic Assembly 213

8.1	 The Big Picture: Model-View-Controller-User 214

8.1.1	 What is a Program? 214

8.1.2	 What is an Agile Program? 215

8.1.3	 MVC in More Detail 217

8.1.4	 MVC-U: Not the End of the Story 217

A Short History of Computer Science 218

Atomic Event Architectures 219

DCI Architectures 220

8.2	 The Form and Architecture of Atomic Event Systems 220

8.2.1	 Domain Objects 221

8.2.2	 Object Roles, Interfaces, and the Model 221

Example 223

8.2.3	 Reflection: Use Cases, Atomic Event Architectures, and

Algorithms 224

8.2.4	 A Special Case: One-to-Many Mapping of Object Roles to

Objects 225

8.3	 Updating the Domain Logic: Method Elaboration, Factoring, and

Re-factoring 226

8.3.1	 Creating New Classes and Filling in Existing Function

Placeholders 227

Example 228

8.3.2	 Back to the Future: This is Just Good Old-Fashioned OO 229

8.3.3	 Analysis and Design Tools 229

8.3.4	 Factoring 231

8.3.5	 A Caution about Re-Factoring 231

8.4	 Documentation? 231

8.5	 Why All These Artifacts? 232

8.6	 History and Such 233

9	 Coding it Up: The DCI Architecture 235

9.1	 Sometimes, Smart Objects Just Aren’t Enough 235

9.2	 DCI in a Nutshell 236

9.3	 Overview of DCI 238

9.3.1	 Parts of the User Mental Model We’ve Forgotten 239

9.3.2	 Enter Methodful Object Roles 240

9.3.3	 Tricks with Traits 242

9.3.4	 Context Classes: One Per Use Case 243

9.4	 DCI by Example 246

9.4.1	 The Inputs to the Design 246

9.4.2	 Use Cases to Algorithms 247

9.4.3	 Methodless Object Roles: The Framework for Identifiers 250

x Contents

9.4.4	 Partitioning the Algorithms Across Methodful Object Roles 253

Traits as a Building Block 253

In Smalltalk 253

In C++ 254

In Ruby 256

Coding it Up: C++ 257

Coding Up DCI in Ruby 259

9.4.5	 The Context Framework 261

The Ruby Code 263

The C++ Code 265

Making Contexts Work 267

Habits: Nested Contexts in Methodful Object Roles 277

9.4.6	 Variants and Tricks in DCI 283

Context Layering 283

Information Hiding 283

Selective Object Role Injection 284

9.5	 Updating the Domain Logic 285

9.5.1	 Contrasting DCI with the Atomic Event Style 286

9.5.2	 Special Considerations for Domain Logic in DCI 287

9.6	 Context Objects in the User Mental Model: Solution to an

Age-Old Problem 290

9.7	 Why All These Artifacts? 294

Why not Put the Entire Algorithm Inside of the Class with

Then Why not Localize the Algorithm to a Class and Tie it to

Why not Put the Algorithm into a Procedure, and Combine

the Procedural Paradigm with the Object Paradigm

If I Collect Together the Algorithm Code for a Use Case in

One Class, Including the Code for All of its

Deviations, Doesn’t the Context Become Very

Why not Use Classes Instead of ‘‘Methodful Object Roles’’? 295

which it is Most Closely Coupled? 295

Domain Objects as Needed? 296

in a Single Program? 296

Large? 296

So, What do DCI and Lean Architecture Give Me? 297

And Remember. . . 297

9.8	 Beyond C++: DCI in Other Languages 297

9.8.1	 Scala 298

9.8.2	 Python 299

9.8.3	 C# 299

9.8.4	 . . . and Even Java 299

9.8.5	 The Account Example in Smalltalk 300

9.9	 Documentation? 300

9.10 History and Such	 301

9.10.1 DCI and Aspect-Oriented Programming	 302

9.10.2 Other Approaches	 302

xi Contents

10 Epilog 305

Appendix A Scala Implementation of the DCI Account Example 307

Appendix B Account Example in Python 311

Appendix C Account Example in C# 315

Appendix D Account Example in Ruby 321

Appendix E Qi4j 327

Appendix F Account Example in Squeak 331

F.1 Testing Perspective 333

F.2 Data Perspective 333

F.2.1 BB5Bank 333

F.2.2 BB5SavingsAccount 334

F.2.3 BB5CheckingAccount 334

F.3 Context Perspective 335

F.3.1 BB5MoneyTransferContext 335

F.4 Interaction (RoleTrait) Perspective 336

F.4.1 BB5MoneyTransferContextTransferMoneySource 336

F.4.2 BB5MoneyTransferContextMyContext 337

F.4.3 BB5MoneyTransferContextTransferMoneySink 337

F.5 Support Perspective (Infrastructure Classes) 337

F.5.1 BB1Context (common superclass for all contexts) 337

F.5.2 BB1RoleTrait (all RoleTraits are instances of this class) 339

Bibliography 341

Index 351

About the Authors
Gertrud Bjørnvig is an agile requirements expert with over 20 years’
experience in system development. She is a co-founder of the Danish Agile
User Group and is a partner in Scrum Training Institute.

Jim Coplien is a software industry pioneer in object-oriented design,
architecture patterns, and agile software development. He has authored
several books on software design and agile software development, and is
a partner in the Scrum Training Institute.

xii

Preface
What my grandfather did was create options. He worked hard to allow my father to

have a better education than he did, and in turn my father did the same.

Danny Hillis, quoted in The Clock of the Long Now, p. 152.

Harry Grinnell, who was co-author James Coplien’s grandfather, was a
life-long postal worker, but many of his life’s accomplishments can be
found in his avocations. His father was an alcoholic and his mother a
long-suffering religious woman. Grandpa Harry dropped out of school
after eighth year to take a job in a coal yard to put food on the table after
much of the family budget had gone to support his father’s habit. Harry
would go on to take up a job as a postal worker in 1925 at the age of 19, and
married Jim’s grandmother the next year. He faced the changes of the Great
Depression, of two world wars, and of great economic and social change.

You’re probably wondering why an Agile book starts with a story
about Grandpa Harry. It’s because his avocation as a master craftsman
in woodworking together with his common-sense approach to life offer
a fitting metaphor for the Agile and Lean styles of development. This is
a book about common sense. Of course, one person’s common sense is
another one’s revelation. If you are just learning about Agile and Lean, or
are familiar only with their pop versions, you may find new insights here.
Even if you know about Agile and Lean and are familiar with architecture,
you’re likely to learn from this book about how the two ideas can work
and play together.

As a postal employee, Grandpa Harry of course worked to assure that
the post office met its business objectives. He worked in the days when the
U.S. postal service was still nationalized; the competition of UPS and DHL
didn’t threaten postal business until late in his career. Therefore, the focus
of his work wasn’t as much on business results and profit as it was on
quality and individual customer service. Grandpa Harry was a rural mail
carrier who delivered to rural Wisconsin farmers, one mailbox at a time,
six days a week, come rain or shine. It wasn’t unusual for him to encounter

xiii

xiv Preface

a half-meter of snow, or snow drifts two meters high on his daily rounds.
Flooded creek valleys might isolate a farm, but that could be no obstacle.
He delivered mail in his rugged four-wheel drive Willys Jeep that he
bought as an Army surplus bargain after World War II. He outfitted it with
a snowplow in the winter, often plowing his way to customers’ mailboxes.

There are many good parallels between Grandpa Harry’s approach to
life and the ideals of Lean and Agile today. You need close contact with
your customer and have to earn the trust of your customer for Agile to
work. It’s not about us-and-them as typified by contracts and negotiation;
such was not part of Grandpa Harry’s job, and it’s not the job of a modern
software craftsperson in an Agile setting. The focus is on the end user. In
Grandpa Harry’s case, that end user was the child receiving a birthday
card from a relative thousands of miles away, or a soldier in Viet Nam
receiving a care package from home after it being entrusted to the United
States Postal Service for dispatching to its destination, or the flurry of
warm greetings around the Christmas holidays. The business entity in the
middle – in Grandpa Harry’s case, the U.S. Postal Service, and in our case,
our customers – tend to become transparent in the light of the end users’
interests. Customers care about the software CD as a means for profit; end
users have a stake in those products’ use cases to ensure some measure of
day-to-day support of their workflow.

To say this is neither to deny customers a place, nor to infer that our
employers’ interests should be sacrificed to those of our ultimate clientele. A
well-considered system keeps evolving so everybody wins. What Grandpa
Harry worked for was called the postal system: it was really a system,
characterized by systems thinking and a concern for the whole. So, yes,
the end user was paramount, but the system understood that a good post
office working environment and happy postal workers were an important
means to the end of user satisfaction. Postal workers were treated fairly in
work conditions and pay; exceptions were so unusual that they made the
news. In the same sense, the Agile environment is attentive to the needs
of the programmer, the analyst, the usability engineer, the manager, and
the funders. Tools such as architectural articulation, good requirements
management, and lean minimalism improve the quality of life for the
production side too. That is important because it supports the business
goals. It is imperative because, on a human scale, it is a scandal to sacrifice
development staff comfort to end user comfort.

Life in Grandpa Harry’s time was maybe simpler than it is today, but
many of the concepts of Lean and Agile are simple ideas that hearken back
to that era. Just because things are simple doesn’t mean they are simplistic.
The modern philosopher Thomas Moore asks us to ‘‘live simply, but
be complicated’’ (Moore 2001, p. 9). He notes that when Thoreau went
to Walden Pond, his thoughts became richer and more complicated the

Preface xv

simpler his environment became. To work at this level is to begin to
experience the kinds of generative processes we find in nature. Great
things can arise from the interactions of a few simple principles. The key,
of course, is to find those simple principles.

Grandpa Harry was not much one for convention. He was a doer, but
thinking backed his doing. In this book, we’ll certainly relate practices and
techniques from 15 years of positive experiences together with software
partners worldwide. But don’t take our word for it. This is as much a
book about thinking as about doing, much as the Agile tradition (and
the Agile Manifesto itself (Beck et al 2001)) is largely about doing, and
the Lean concepts from the Toyota tradition relate more to planning and
thinking (Liker 2004, ff. 237). These notions of thinking are among the lost
practices of Agile. Agile perhaps lost this focus on thinking and product in
its eagerness to shed the process-heavy focus of the methodology-polluted
age of the 1980s.

Grandpa Harry’s life is also a reminder that we should value timeless
domain knowledge. Extreme Programming (XP) started out in part by
consciously trying to do exactly the opposite of what conventional wis
dom recommended, and in part by limiting itself to small-scale software
development. Over time, we have come full circle, and many of the old
practices are being restored, even in the halls and canon of Agiledom.
System testing is now ‘‘in,’’ as is up-front architecture – even in XP (Beck
1999, p. 113, 2005, p. 28). We’re starting to recover insights from past gen
erations of system development that perhaps we didn’t even appreciate
at the time; if we did, we’ve forgotten. Many of these ‘‘old’’ ideas such as
architecture and planning, and even some of the newer ideas such as use
cases that have fallen into disfavor, deserve a second look. We find many
of these ideas re-surfacing under different names anyhow in today’s Agile
world: architecture reappears as metaphor, and use cases reappear as the
collections of user story cards and supplementary constraint and testing
cards that go with them (Cohn 2004), or as the requirement structuring we
find in story maps (Patton 2009).

The domain knowledge in this book goes beyond standing on our tiptoes
to standing on the shoulders of giants. We have let our minds be sharpened
by people who have earned broad respect in the industry – and double that
amount of respect from us – from Larry Constantine and David Parnas to
Jeff Sutherland and Alistair Cockburn. We also draw on our own experience
in software development going back to our first hobby programs in the
1960s, and our software careers going back to the early 1970s (Coplien) and
1980s (Bjørnvig). We draw lightly on Coplien’s more recent book together
with Neil Harrison, Organizational Patterns of Agile Software Development
(Coplien and Harrison 2004), which stands on ten years of careful research
into software development organizations worldwide. Its findings stand as

xvi Preface

the foundations of the Agile discipline, having been the inspiration for
stand-up meetings in the popular Scrum product management framework
(Sutherland 2003, 2007), and of much of the structural component of XP
(Fraser et al 2003). Whereas the previous book focused on the organizational
with an eye to the technical, this one focuses on the technical with an eye
to the organizational. Nerds: enjoy!

As long as we have you thinking, we want you thinking about issues
of lasting significance to your work, your enterprise, and the world we
as software craftsmen and craftswomen serve. If we offer a technique, it’s
because we think it’s important enough that you’d notice the difference
in the outcome of projects that use it and those that don’t. We won’t
recommend exactly what incantation of words you should use in a user
story. We won’t bore you with whether to draw class diagrams bottom-up
or top-down nor, in fact, whether to draw diagrams at all. We won’t try
to indoctrinate you with programming language arguments – since the
choice of programming language has rarely been found to matter in any
broadly significant way. As we know from Agile and Lean thinking, people
and values matter most, and bring us to ideals such as caring. The byline
on the book’s cover, Software as if people mattered, is a free re-translation of
the title of Larry Constantine’s keynote that Coplien invited him to give at
OOPSLA in 1996. People are ultimately the focus of all software, and it’s
time that we show enough evidence to convict us of honoring that focus.
We will dare use the phrase ‘‘common sense,’’ as uncommon as its practice
is. We try to emphasize things that matter – concrete things, nonetheless.

There is a subtext to this book for which Grandpa Harry is a symbol:
valuing timelessness. In our software journey the past 40 years we have
noticed an ever-deepening erosion of concern for the long game in software.
This book is about returning to the long game. However, this may be a
sobering concern as much for society in general as it is for our relatively
myopic view of software. To help drive home this perspective we’ve taken
inspiration from the extended broadside The Clock of the Long Now (Brand
1999), which is inspired in no small part by software greats including
Mitchell Kapoor and Daniel Hillis. The manuscript is sprinkled with small
outtakes from the book, such as this one:

What we can do is convert the design of software from brittle to
resilient, from heedlessly headlong to responsible, and from time
corrupted to time embracing. (Brand 1999, p. 86)

These outtakes are short departures from the book’s (hopefully practical)
focus on architecture and design that raise the principles to levels of social
relevance. They are brief interludes to inspire discussions around dinner
and reflection during a walk in the woods. We offer them neither to

Preface xvii

preach at you nor to frighten you, but to help contextualize the humble
software-focused theses of this book in a bigger picture.

We’ve worked with quite a few great men and women to develop and
refine the ideas in this book. It has been an honor sparring with Trygve
Reenskaug about his DCI (Data, Context and Interaction) architecture,
learning much from him and occasionally scoring an insight. We have

¨ also traded many notes with Richard Oberg, whose Qi4j ideas echo many
aspects of DCI, and it has been fun as we’ve built on each other’s work.

We’ve also built on the work of many people who started coding up DCI
examples after a presentation at JaOO in 2008: Serge Beaumont at Xebia
(Python), Ceasario Ramos (who thoroughly explored the Java space), Jesper
Rugård Jensen (ditto), Lars Vonk (in Groovy), David Byers (also in Python),
Anders Narwath (JavaScript), Unmesh Joshi (AspectJ), Bill Venners (Scala,
of course), and Christian Horsdal Gammelgaard of Mjølner (C#/.Net).
Many examples in this book build on Steen Lehmann’s exploration of DCI
in Ruby. We, and the entire computing community, should be ever grateful
to all of these folks.

We appreciate all the good folks who’ve devoted some of their hours
to reading and reflecting on our early manuscripts. Trygve, again, offered
many useful suggestions and his ideas on the manuscript itself have helped
us clarify and sharpen the exposition of DCI. It goes without saying that
the many hours we spent with Trygve discussing DCI, even apart from
any focus on this book, were memorable times. Trygve stands almost as a
silent co-author of this book, and we are ever indebted to him and to his
wife Bjørg for many hours of stimulating discussion. Thanks, Trygve!

We are also indebted to Rebecca Wirfs-Brock for good discussions about
use cases, for clarifying the historical context behind them, for confirming
many of our hunches, and for straightening out others.

We owe special thanks to Lars Fogtmann Sønderskov for a detailed
review of an early version of the manuscript. His considerable experience
in Lean challenged our own thinking and pushed us to review and re-think
some topics in the book. Brett Schuchert, who was a treasured reviewer
for Advanced C++ 20 years ago, again treated us to a tough scouring of
the manuscript. Thanks, Brett! Thanks also to our other official reviewer,
the renowned software architect Philippe Kruchten, who helped us
make some valuable connections to other broadly related work. Atzmon
Hen-tov not only found many small mistakes but also helped us frame the
big picture, and his comments clearly brought years of hard-won insights
from his long journey as a software architect. Thanks to the many other
reviewers who scoured the manuscript and helped us to polish it: Roy Ben
Hayun, Dennis L DeBruler, Dave Byers, Viktor Grgic, Neil Harrison, Bojan
Joviciˇ ć, Urvashi Kaul, Steen Lehmann, Dennis Mancl, Simon Michael,
Sandra Raffle Carrico, Jeppe Kilberg Møller, Rune Funch Søltoft, Mikko

xviii Preface

Suonio, and Lena Nikolaev. Many ideas came up in discussions at the
Agile Architecture course in Käpylä, Finland, in October 2008: Aleksi
Ahtiainen, Aki Kolehmainen, Heimo Laukkanen, Mika Leivo, Ari Tikka,
and Tomi Tuominen all contributed mightily. Thanks, too, to James
Noble, Peter Bunus, and John McGregor for their evaluations of the book
proposal in its formative days and for their encouragement and feedback.

A big thanks to Paul Mitchell Design, Ltd., for a great job working with
us on the book cover design. Claire Spinks took on the unenviable job
of copy editing and helped us polish up the manuscript. And, of course,
many thanks to Birgit Gruber, our editor, and to Ellie Scott, who oversaw
much of the editorial hand-holding during the book’s formative years.

Thanks to Magnus Palmgård of Tobo, Sweden for providing a lovely
venue for several months of thoughtful reflection and writing.

We appreciate the pioneers who have gone before us and who have
influenced the way we look at the world and how we keep learning about it.
Phillip Fuhrer lent useful insights on problem definition. We had thoughtful
E-mail conversations with Larry Constantine, and it was a pleasure to
again interact with him and gain insight on coupling and cohesion from
a historical context. Some of his timeless ideas on coupling, cohesion,
and even Conway’s Law (which he named) are coming back into vogue.
Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, Andrew Black,
Roel Wuyts and others laid the foundations for traits. Trygve Reenskaug,
Jeff Sutherland, Alistair Cockburn, Jerry Weinberg, and hundreds of others
have all led us here. So, of course, has Grandpa Harry.

C H A P T E R

1

Introduction
We are changing the Earth more rapidly than we are understanding it.

– Peter Vitousek et al. quoted in The Clock of the Long Now, p. 9.

A proper book isn’t just a collection of facts or even of practices: it reflects a
cause and a mission. In the preface we couched this book in a broad context
of social responsibility. Just as the motivation section (goal in context,
summary, or whatever else you call it) in a use case helps the analyst
understand requirements scenarios, this chapter might shed light on the
ones that follow. It describes our philosophy behind the book and the way
we present the ideas to you. If you’re tempted to jump to a whirlwind
tour of the book’s contents, you might proceed to Chapter 2. However,
philosophy is as important as the techniques themselves in a Lean and
Agile world. We suggest you read through the introduction at least once,
and tuck it away in your memory as background material for the other
chapters that will support your day-to-day work.

1.1 The Touchstones: Lean and Agile

Lean and Agile are among the most endearing buzzwords in software
today, capturing the imagination of management and nerds alike. Popular
management books of the 1990s (Womack et al 1991) coined the term Lean
for the management culture popularized by the Japanese auto industry,
and which can be traced back to Toyota where it is called The Toyota Way.
In vernacular English, minimal is an obvious synonym for Lean, but to link
lean to minimalism alone is misleading.

1

2 Chapter 1

Lean’s primary focus is the enterprise value stream. Lean grabs the
consumer world and pulls it through the value stream to the beginnings of
development, so that every subsequent activity adds value. Waste in pro
duction reduces value; constant improvement increases value. In Western
cultures managers often interpret Lean in terms of its production practices:
just-in-time, end-to-end continuous flow, and reduction of inventory. But
its real heart is The Lean Secret: an ‘‘all hands on deck’’ mentality that
permeates every employee, every manager, every supplier, and every part
ner. Whereas the Agile manifesto emphasizes customers, Lean emphasizes
stakeholders – with everybody in sight being a stakeholder.

Lean architecture and Agile feature development aren’t about working
harder. They’re not about working ‘‘smarter’’ in the academic or traditional
computer science senses of the word ‘‘smart.’’ They are much more about
focus and discipline, supported by common-sense arguments that require
no university degree or formal training. This focus and discipline shines
through in the roots of Lean management and in many of the Agile values.

We can bring that management and development style to software
development. In this book, we bring it to software architecture in particular.
Architecture is the big-picture view of the system, keeping in mind that
the best big pictures need not be grainy. We don’t feel a need to nail down
a scientific definition of the term; there are too many credible definitions to
pick just one. For what it’s worth, the IEEE defines it this way:

. . . The fundamental organization of a system embodied in its com
ponents, their relationships to each other, and to the environment and
the principles guiding its design and evolution. (IEEE1471 2007)

Grady Booch gives us this simple definition:

Architecture represents the significant design decisions that shape a
system, where significant is measured by cost of change. (Booch 2006)

That isn’t too bad. But more generally, we define architecture as the form of
a system, where the word form has a special meaning that we’ll explore a bit
later. For now, think of it as relating to the first three components of the IEEE
definition. No matter how we care to define it, software architecture should
support the enterprise value stream even to the extent that the source code
itself should reflect the end user mental model of the world. We will deliver
code just in time instead of stockpiling software library warehouses ahead
of time. We strive towards the practice of continuous flow.

Each of these practices is a keystone of Lean. But at the heart of Lean
architecture is the team: the ‘‘all hands on deck’’ mentality that everyone is
in some small part an architect, and that everyone has a crucial role to play

3 Introduction

in good project beginnings. We want the domain experts (sometimes called
the architects) present as the architecture takes shape, of course. However,
the customer, the developer, the testers, and the managers should also be
fully present at those beginnings.

This may sound wasteful and may create a picture of chaotic beginnings.
However, one of the great paradoxes of Lean is that such intensity at the
beginning of a project, with heavy iteration and rework in design, actually
reduces overall life cycle cost and improves product quality. Apply those
principles to software, and you have a lightweight up-front architecture.
Lightweight means that we reduce the waste incurred by rework (from inad
equate planning), unused artifacts (such as comprehensive documentation
and speculative code), and wait states (as can be caused by the review
life cycle of architecture and design documents, or by handoffs between
functional teams).

Software folks form a tribe of sorts (Nani 2006) that holds many beliefs,
among them that architecture is hard. The perception comes in part from
architecture’s need for diverse talents working together, compounded by
the apparently paradoxical need to find the basic form of something that
is essentially complex. Even more important, people confuse ‘‘takes a
long time’’ with ‘‘hard.’’ That belief in turn derives from our belief in
specialization, which becomes the source of handoffs: the source of the
delays that accumulate into long intervals that makes architecture look
hard. We tend to gauge our individual uncertainty and limited experience
in assessing the difficulty of design, and we come up short, feeling awkward
and small rather than collaborative and powerful. Architecture requires a
finesse and balance that dodges most silver bullets. Much of that finesse
comes with the Lean Secret: the takes-a-long-time part of hard becomes
softer when you unite specialists together in one room: everybody, all
together, from early on. We choose to view that as hard because, well, that’s
how it’s always been, and perhaps because we believe in individuals first
and interactions second.

Neither Lean nor Agile alone make architecture look easy. However,
architecture needn’t be intrinsically hard. Lean and Agile together illu
minate architecture’s value. Lean brings careful up-front planning and
‘‘everybody, all together, from early on’’ to the table, and Agile teaches or
reminds us about feedback. Together they illuminate architecture’s value:
Lean, for how architecture can reduce waste, inconsistency, and irregular
development; and Agile, for how end user engagement and feedback can
drive down long-term cost. Putting up a new barn is hard, too. As Grandpa
Harry used to say, many hands make light work, and a 19th-century Amer
ican farm neighborhood could raise a new barn in a couple of days. So
can a cross-functional team greatly compress the time, and therefore the
apparent difficulty, of creating a solid software architecture.

4 Chapter 1

Another key Lean principle is to focus on long-term results (Liker 2004,
pp. 71–84). Lean architecture is about doing what’s important now that
will keep you in the game for the long term. It is nonetheless important to
contrast the Lean approach with traditional approaches such as ‘‘investing
for the future.’’ Traditional software architecture reflects an investment
model. It capitalizes on heavyweight artifacts in software inventory and
directs cash flow into activities that are difficult to place in the customer
value stream. An industry survey of projects with ostensibly high failure
rates (as noted in Glass (2006), which posits that the results of the Standish
survey may be rooted in characteristically dysfunctional projects) found
that 70% of the software they build is never used (Standish Group 1995).

Lean architecture carefully slices the design space to deliver exactly the
artifacts that can support downstream development in the long term. It
avoids wasteful coding that can better be written just after demand for
it appears and just before it generates revenues in the market. From the
programmer’s perspective, it provides a way to capture crucial design
concepts and decisions that must be remembered throughout feature
production. These decisions are captured in code that is delivered as part
of the product, not as extraneous baggage that becomes irrelevant over time.

With such Lean foundations in place, a project can better support Agile
principles and aspire to Agile ideals. If you have all hands on deck, you
depend more on people and interactions than on processes and tools. If you
have a value stream that drives you without too many intervening tools
and processes, you have customer engagement. If we reflect the end user
mental model in the code, we are more likely to have working software.
And if the code captures the form of the domain in an uncluttered way, we
can confidently make the changes that make the code serve end user wants
and needs.

This book is about a Lean approach to domain architecture that lays
a foundation for Agile software change. The planning values of Lean do
not conflict with the inspect-and-adapt principles of Agile: allocated to
the proper development activities, each supports the other in the broader
framework of development. We’ll revisit that contrast in a little while
(Section 1.4), but first, let’s investigate each of Lean Architecture and Agile
Production in more detail.

1.2 Lean Architecture and Agile Feature
Development

The Agile Manifesto (Beck et al 2001) defines the principles that underlie

the Agile vision, and the Toyota Way (Liker 2004) defines the Lean

5 Introduction

vision. This book offers a vision of architecture in an organization that
embraces these two sets of ideals. The Lean perspective focuses on how we
develop the overall system form by drawing on experience and domain
knowledge. The Agile perspective focuses on how that informed form
helps us respond to change, and sometimes even to plan for it. How does
that vision differ from the classic, heavyweight architectural practices that
dominated object-oriented development in the 1980s? We summarize the
differences in Table 1-1.

Table 1-1 What is Lean Architecture?

Lean Architecture Classic Software Architecture

Defers engineering Includes engineering

Gives the craftsman ‘‘wiggle room’’ for
change

Tries to limit large changes as
‘‘dangerous’’ (fear change?)

Defers implementation (delivers
lightweight APIs and descriptions of
relationships)

Includes much implementation
(platforms, libraries) or none at all
(documentation only)

Lightweight documentation Documentation-focused, to describe the
implementation or compensate for its
absence

People Tools and notations

Collective planning and cooperation Specialized planning and control

End user mental model Technical coupling and cohesion

■	 Classic software architecture tends to embrace engineering concerns
too strongly and too early. Agile architecture is about form, and while
a system must obey the same laws that apply to engineering when
dealing with form, we let form follow proven experience instead of
being driven by supposedly scientific engineering rationales. Those
will come soon enough.

■	 This in turn implies that the everyday developers should use their
experience to tailor the system form as new requirements emerge and
as they grow in understanding. Neither Agile nor Lean gives coders
wholesale license to ravage the system form, but both honor the value
of adaptation. Classic architecture tends to be fearful of large changes,
so it focuses on incremental changes only to existing artifacts: adding
a new derived class is not a transformation of form (architecture), but
of structure (implementation). In our combined Lean/Agile
approach, we reduce risk by capturing domain architecture, or basic

6 Chapter 1

system form, in a low-overhead way. Furthermore, the architecture
encourages new forms in those parts of the system that are likely to
change the most. Because these forms aren’t pre-filled with premature
structure, they provide less impedance to change than traditional
approaches. This is another argument for a true architecture of the
forms of domain knowledge and function rather than an architecture
based on structure.

■	 Classic software architecture sometimes rushes into implementation
to force code reuse to happen or standards to prevail. Lean
architecture also adopts the perspective that standards are valuable,
but again: at the level of form, protocols, and APIs, rather than their
implementation.

■	 Some classic approaches to software architecture too often depend
on, or at least produce, volumes of documentation at high cost. The
documentation either describes ‘‘reusable’’ platforms in excruciating
detail or compensates for the lack of a clarifying implementation.
Architects often throw such documentation over the wall into
developers’ cubicles, where it less often used than not. Agile
emphasizes communication, and sometimes written documentation
is the right medium. However, we will strive to document only the
stuff that really matters, and we’ll communicate many decisions in
code. That kills two birds with one stone. The rest of the time, it’s
about getting everybody involved face-to-face.

■	 Classic architectures too often focus on methods, rules, tools,
formalisms, and notations. Use them if you must. But we won’t talk
much about those in this book. Instead, we’ll talk about valuing
individuals and their domain expertise, and valuing the end-user
experience and their mental models that unfold during analysis.

■	 Both Lean and classic architecture focus on long-term results, but they
differ in how planning is valued. Even worse than heavy planning is
a prescription to follow the plan. Lean focuses on what’s important
now, whenever ‘‘now’’ is – whether that is hitting the target for next
week’s delivery or doing long-term planning. It isn’t only to eliminate
waste by avoiding what is never important (dead code and unread
documents), but has a subtler timeliness. Architecture isn’t an excuse
to defer work; on the contrary, it should be a motivation to embrace
implementation as soon as decisions are made. We make decisions
and produce artifacts at the most responsible times.

As we describe it in this book, Lean architecture provides a firm foun
dation for the ongoing business of a software enterprise: providing timely
features to end users.

7 Introduction

1.3 Agile Production

If your design is lean, it produces an architecture that can help you be more
Agile. By Agile, we mean the values held up by the Agile Manifesto:

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more. (Beck et al 2001)

1.3.1 Agile Builds on Lean

Just as with the ‘‘all hands on deck’’ approach of Lean, Agile development
also embraces close person-to-person contact, particularly with the clients.
Unlike the tendencies of Lean, or much of today’s software architecture, our
vision of Agile production plans for change. Lean architecture provides a
context, a vocabulary, and productive constraints that make change easier
and perhaps a little bit more failure-proof. It makes explicit a value stream
along which stakeholder changes can propagate without being lost. We
can respond to market whims. And we love market whims – because that’s
how we provide satisfaction and keep the enterprise profitable.

Agile production not only builds on a Lean domain architecture, but
it stays Lean with its focus on code – working software. The code is the
design. No, really. The code is the best way to capture the end user
mental models in a form suitable to the shaping and problem solving that
occur during design. We of course also need other design representations
that close the feedback loop to the end user and other stakeholders for
whom code is an unsuitable medium, so lightweight documentation may
be in order – we’ll introduce that topic in Section 1.6.4. We take this
concept beyond platitudes, always striving to capture the end-user model
of program execution in the code.

Classic architectures focus on what doesn’t change, believing that foun
dations based on domain knowledge reduce the cost of change. Agile
understands that nothing lasts forever, and it instead focuses explicitly
on what is likely to change. Here we balance the two approaches, giving
neither one the upper hand.

8 Chapter 1

Lean also builds on concepts that most people hold to be fundamental
to Agile. The Lean notion of value streams starting with end users recalls
individual and interactions as well as customer focus. The Lean notion of
reduced waste goes hand-in-hand with Agile’s view of documentation. It
is not about Lean versus Agile and neither about building Lean on top of
Agile nor Agile on top of Lean. Each one is a valuable perspective into the
kind of systems thinking necessary to repeatedly deliver timely products
with quality.

1.3.2 The Scope of Agile Systems

Electronically accelerated market economies have swept the world for good
reasons. They are grass-roots driven (by customers and entrepreneurs), swiftly

adaptive, and highly rewarding.

The Clock of the Long Now, p. 25.

Software architects who were raised in the practices and experience of
software architecture of the 1970s and 1980s will find much comfort in the
Lean parts of this book, but may find themselves in new territory as they
move into the concepts of Agile production. Architecture has long focused
on stability while Agile focuses on change. Agile folks can learn from the
experience of previous generations of software architecture in how they
plan for change. As we present a new generation of architectural ideas in
this book, we respond to change more directly, teasing out the form even
of those parts of software we usually hold to be dynamic. We’ll employ
use cases to distill the stable backbones of system behavior from dozens or
hundreds of variations. We go further to tease out the common rhythms
of system behavior into the roles that are the basic concepts we use to
describe it and the connections between them.

Grandpa Harry used to say that necessity is the mother of invention,
so need and user expectation are perhaps the mother and father of change.
People expect software to be able to change at lightening speed in modern
markets. On the web, in financial services and trading, and in many other
market segments, the time constants are on the order of hours or days.
The users themselves interact with the software on time scales driven by
interactive menus and screens rather than by daily batch runs. Instead of
being able to stack the program input on punched cards ahead of time,
decisions about the next text input or the next menu selection are made
seconds or even milliseconds before the program must respond to them.

Agile software development is well suited to such environments because
of its accommodation for change. Agile is less well suited to environments

9 Introduction

where feedback is either of little value (such as the development of a
protocol based on a fully formal specification and development process)
or is difficult to get (such as from software that is so far embedded in other
systems that it has no obvious interaction with individuals). Libraries and
platforms often fall into this category: how do you create short feedback
loops that can steer their design? Sometimes a system is so constrained by
its environment that prospects for change are small, and Agile approaches
may not help much.

Lean likewise shines in some areas better than others. It’s overkill
for simple products. While Lean can deal with complicated products, it
needs innovation from Agile to deal with complex products where we
take complicated and complex in Snowden’s (Snowden 2009) terms. Com
plicated systems can rely on fact-based management and can handle
known unknowns, but only with expert diagnosis. Complex systems have
unknown unknowns, and there is no predictable path from the current
state to a better state (though such paths can be rationalized in retrospect).
There are no right answers, but patterns emerge over time. Most of the
organizational patterns cited in this book relate to complex problems. Even
in dealing with complex systems, Agile can draw on Lean techniques to
establish the boundary conditions necessary for progress.

The good news is that most systems have both a Lean component and
an Agile component. For example, embedded or deeply layered system
software can benefit from domain experience and the kind of thorough
analysis characteristic of Lean, while other software components that
interact with people can benefit from Agile.

Below the realm of Lean and Agile lie simple systems, which are largely
knowable and predictable, so we can succeed even if our efforts fall short
of both Lean and Agile. On the other end are chaotic system problems such
as dealing with a mass system outage. There, even patterns are difficult to
find. It is important to act quickly and to just find something that works
rather than seeking the right answer. Chaotic systems are outside the scope
of our work here.

1.3.3 Agile and DCI
If we can directly capture key end-user mental models in the code, it
radically increases the chances the code will work. The fulfillment of this
dream has long eluded the object-oriented programming community, but
the recent work on the Data, Context and Interaction (DCI) architecture,
featured in Chapter 9, brings this dream much closer to reality than we
have ever realized. And by ‘‘work’’ we don’t mean that it passes tests or

10 Chapter 1

that the green bar comes up: we mean that it does what the user expects
it to do.1 The key is the architectural link between the end user mental
model and the code itself.

1.4 The Book in a Very Small Nutshell

We’ll provide a bit meatier overview in Chapter 2, but here is the one-page
(and a bit more) summary of the technical goodies in the book, for you
nerds reading the introduction:

■	 System architecture should reflect the end users’ mental model of
their world. This model has two parts. The first part relates to the
user’s thought process when viewing the screen, and to what the
system is: its form. The second part relates to what end users
do – interacting with the system – and how the system should
respond to user input. This is the system functionality. We work with
users to elicit and develop these models and to capture them in code
as early as possible. Coupling and cohesion (Stevens, Myers, and
Constantine 1974) follow from these as a secondary effect.

■	 To explore both form and function requires up-front engagement of
all stakeholders, and early exploration of their insights. Deferring
interactions with stakeholders, or deferring decisions beyond the
responsible moment slows progress, raises cost, and increases
frustration. A team acts like a team from the start.

■	 Programming languages help us to concretely express form in the
code. For example, abstract base classes can concretely express
domain models. Development teams can build such models in about
one Scrum Sprint: a couple of weeks to a month. Design-by-contract,
used well, gets us closer to running code even faster. Going beyond
this expression of form with too much structure (such as class
implementation) is not Lean, slows things down, and leads to rework.

■	 We can express complex system functionality in use cases. Lightweight,
incrementally constructed use cases help the project to quickly
capture and iterate models of interaction between the end user (actor)
and the system, and to structure the relationships between scenarios.

1 What users really expect has been destroyed by the legacy of the past 40 years of software
deployment. It’s really hard to find out what they actually need, and what they want too often
reflects short-term end-user thinking. Our goal is to avoid the rule of least surprise: we don’t
want end users to feel unproductive, or to feel that the system implementers didn’t understand
their needs, or to feel that system implementers feel that they are stupid. Much of this discussion
is beyond the scope of this book, though we will touch on it from time to time.

Introduction 11

By making requirement dependencies explicit, use cases avoid depen
dency management and communication problems that are common
in complex Agile projects. Simpler documents like User Narratives
are still good enough to capture simple functional requirements.

■	 We can translate use case scenarios into algorithms, just in time, as
new scenarios enter the business process. We encode these algorithms
directly as role methods. We will introduce roles (implemented as role
classes or traits) as a new formalism that captures the behavioral
essence of a system in the same way that classes capture the essence
of domain structure. Algorithms that come from use cases are more or
less directly readable from the role methods. Their form follows
function. This has profound implications for code comprehension,
testability, and formal analysis. At the same time, we create or update
classes in the domain model to support the new functionality. These
classes stay fairly dumb, with the end-user scenario information
separated into the role classes.

■	 We use a recent adaptation of traits to glue together role classes with
the domain classes. When a use case scenario is enacted at run time, the
system maps the use case actors into the objects that will support the
scenario (through the appropriate role interface), and the scenario runs.

Got your attention? It gets even better. Read on.

1.5 Lean and Agile: Contrasting and
Complementary

You should now have a basic idea of where we’re heading. Let’s more
carefully consider Agile and Lean, and their relationships to each other
and to the topic of software design.

One unsung strength of Agile is that it is more focused on the ongoing
sustenance of a project than just its beginnings. The waterfall stereotype is
patterned around greenfield development. It doesn’t easily accommodate
the constraints of any embedded base to which the new software must fit,
nor does it explicitly provide for future changes in requirements, nor does
it project what happens after the first delivery. But Agile sometimes doesn’t
focus enough on the beginnings, on the long deliberation that supports
long-term profitability, or on enabling standards. Both Lean and Agile are
eager to remove defects as they arise. Too many stereotypes of Lean and
Agile ignore both the synergies and potential conflicts between Lean and
Agile. Let’s explore this overlap a bit.

12 Chapter 1

Architects use notations to capture their vision of an ideal system at
the beginning of the life cycle, but these documents and visions quickly
become out-of-date and become increasingly irrelevant over time. If we
constantly refresh the architecture in cyclic development, and if we express
the architecture in living code, then we’ll be working with an Agile
spirit. Yes, we’ll talk about architectural beginnings, but the right way
to view software development is that everything after the first successful
compilation is maintenance.

Lean is often cited as a foundation of Agile, or as a cousin of Agile, or
today as a foundation of some Agile technique and tomorrow not. There
is much confusion and curiosity about such questions in software today.
Scrum inventor Jeff Sutherland refers to Lean and Scrum as separate and
complementary developments that both arose from observations about
complex adaptive systems (Sutherland 2008). Indeed, in some places Lean
principles and Agile principles tug in different directions. The Toyota Way
is based explicitly on standardization (Liker 2004, chapter 12); Scrum says
always to inspect and adapt. The Toyota Way is based on long deliberation
and thought, with rapid deployment only after a decision has been reached
(Liker 2004, chapter 19); most Agile practice is based on rapid decisions
(Table 1-2).

Table 1-2 Contrast between Lean and Agile.

Lean Agile

Thinking and doing Doing

Inspect-plan-do Do-inspect-adapt

Feed-forward and feedback (design for
change and respond to change)

Feedback (react to change)

High throughput Low latency

Planning and responding Reacting

Focus on Process Focus on People

Teams (working as a unit) Individuals (and interactions)

Complicated systems Complex systems

Embrace standards Inspect and adapt

Rework in design adds value, in making is
waste

Minimize up-front work of any kind and
rework code to get quality

Bring decisions forward (Decision
Structure Matrices)

Defer decisions (to the last responsible
moment)

Introduction 13

Some of the disconnect between Agile and Lean comes not from their
foundations but from common misunderstanding and from everyday
pragmatics. Many people believe that Scrum insists that there be no
specialists on the team; however, Lean treasures both seeing the whole as
well as specialization:

[W]hen Toyota selects one person out of hundreds of job applicants
after searching for many months, it is sending a message – the capabili
ties and characteristics of individuals matter. The years spent carefully
grooming each individual to develop depth of technical knowledge, a
broad range of skills, and a second-nature understanding of Toyota’s
philosophy speaks to the importance of the individual in Toyota’s
system. (Liker 2004, p. 186)

Scrum insists on cross-functional team, but itself says nothing about spe
cialization. The specialization myth arises in part from the XP legacy that
discourages specialization and code ownership, and in part from the Scrum
practice that no one use their specialization as an excuse to avoid other
kind of work during a Sprint (Østergaard 2008).

If we were to look at Lean and Agile through a coarse lens, we’d discover
that Agile is about doing and that Lean is about thinking (about continuous
process improvement) and doing. A little bit of thought can avoid a lot
of doing, and in particular re-doing. Ballard (2000) points out that a little
rework and thought in design adds value by reducing product turn-around
time and cost, while rework during making is waste (Section 3.1.2). System
level-factoring entails a bit of both, but regarding architecture only as an
emergent view of the system substantially slows the decision process.
Software isn’t soft, and architectures aren’t very malleable once developers
start filling in the general form with the structure of running code. Lean
architecture moves beyond structure to form. Good form is Lean, and that
helps the system be Agile.

Lean is about complicated things; Agile is about complexity. Lean
principles support predictable, repeatable processes, such as automobile
manufacturing. Software is hardly predictable, and is almost always a
creative – one might say artistic – endeavor (Snowden and Boone 2007).
Agile is the art of the possible, and of expecting the unexpected.

This book tells how to craft a Lean architecture that goes hand-in-glove
with Agile development. Think of Lean techniques, or a Lean architecture,
as a filter that prevents problems from finding a way into your development
stream. Keeping those problems out avoids rework.

Lean principles lie at the heart of architectures behind Agile projects. Agile
is about embracing change, and it’s hard to reshape a system if there
is too much clutter. Standards can reduce decision time and can reduce

14 Chapter 1

work and rework. Grandpa Harry used to say that a stitch in time saves
nine; so up-front thinking can empower decision makers to implement
decisions lightening-fast with confidence and authority. Lean architecture
should be rooted in the thought processes of good domain analysis, in
the specialization of deeply knowledgeable domain experts, and once in a
while on de facto, community, or international standards.

1.5.1 The Lean Secret
The human side of Lean comes down to this rule of thumb:

Everybody, All together, Early On

Using other words, we also call this ‘‘all hands on deck.’’ Why is this
a ‘‘secret’’? Because it seems that teams that call themselves Agile either
don’t know it or embrace it only in part. Too often, the ‘‘lazy’’ side of Lean
shines through (avoiding excess work) while teams set aside elements of
social discipline and process. Keeping the ‘‘everybody’’ part secret lets us
get by with talking to the customer, which has some stature associated
with it, while diminishing focus on other stakeholders like maintenance,
investors, sales, and the business. Keeping the ‘‘early on’’ part a secret
makes it possible to defer decisions – and to decide to defer a decision
is itself a decision with consequences. Yet all three of these elements are
crucial to the human foundations of Lean. We’ll explore the Lean Secret in
more depth in Chapter 3.

1.6 Lost Practices

We speak . . . about the events of decades now, not centuries. One advantage of
that, perhaps, is that the acceleration of history now makes us all historians.

The Clock of the Long Now, p. 16.

As we distilled our experience into the beginnings of this book, both of us
started to feel a bit uncomfortable and even a little guilty about being old
folks in an industry we had always seen fueled by the energy of the young,
the new, and the restless. As people from the patterns, Lean and object
communities started interacting more with the new Agile community,
however, we found that we were in good company. Agile might be the first
major software movement that has come about as a broad-based mature
set of disciplines.

Nonetheless, as Agile rolled out into the industry the ties back to experi
ence were often lost. That Scrum strived to remain agnostic with respect to

Introduction 15

software didn’t help, so crucial software practices necessary to Scrum’s suc
cess were too easily forgotten. In this book we go back to the fundamental
notions that are often lost in modern interpretation or in the practice of XP
or Scrum. These include system and software architecture, requirements
dependency management, foundations for usability, documentation, and
others.

1.6.1 Architecture

Electronically accelerated market economies have swept the world for good
reasons. They are grass-roots driven (by customers and entrepreneurs), swiftly

adaptive, and highly rewarding. But among the things they reward, as McKenna
points out, is short-sightedness.

The Clock of the Long Now, p. 25.

A project must be strong to embrace change. Architecture not only helps
give a project the firmness necessary to stand up to change, but also
supports the crucial Agile value of communication. Jeff Sutherland has
said that he never has, and never would, run a software Scrum without
software architecture (Coplien and Sutherland 2009). We build for change.

We know that ignoring architecture in the long term increases long-term
cost. Traditional architecture is heavily front-loaded and increases cost
in the short term, but more importantly, pushes out the schedule. This
is often the case because the architecture invests too much in the actual
structure of implementation instead of sticking with form. A structure-free
up-front architecture, constructed as pure form, can be built in days or
weeks, and can lay the foundation for a system lifetime of savings. Part
of the speedup comes from the elimination of wait states that comes from
all-hands-on-deck, and part comes from favoring lightweight form over
massive structure.

1.6.2 Handling Dependencies between Requirements

To make software work, the development team must know what other
software and features lay the foundation for the work at hand. Few Agile
approaches speak about the subtleties of customer engagement and end-
user engagement. Without these insights, software developers are starved
for the guidance they need while advising product management about
product rollout. Such failures lead to customer surprises, especially when
rapidly iterating new functionality into the customer stream.

Stakeholder engagement (Chapter 3) is a key consideration in require
ments management. While both Scrum and XP encourage tight coupling
to the customer, the word ‘‘end user’’ doesn’t appear often enough, and

16 Chapter 1

the practices overlook far too many details of these business relation
ships. That’s where the subtle details of requirements show up – in the
dependencies between them.

1.6.3 Foundations for Usability

The Agile Manifesto speaks about working software, but nothing about
usable software. The origins of Agile can be traced back to object orientation,
which originally concerned itself with capturing the end-user model in
the code. Trygve Reenskaug’s Model-View-Controller (MVC) architecture
makes this concern clear and provides us a framework to achieve usability
goals. In this book we build heavily on Trygve’s work, both in the classic
way that MVC brings end user mental models together with the system
models, and on his DCI work, which helps users enact system functionality.

1.6.4 Documentation

Suppose we wanted to improve the quality of decisions that have long-term
consequences. What would make decision makers feel accountable to posterity as

well as to their present constituents? What would shift the terms of debate from the
immediate consequences of the delayed consequences, where the real impact is? It

might help to have the debate put on the record in a way that invites serious review.

The Clock of the Long Now, p. 98.

Documentation gets a bad rap. Methodologists too often miss the point that
documentation has two important functions: to communicate perspectives
and decisions, and to remember perspectives and decisions. Alistair Cock
burn draws a similar dichotomy between documentation that serves as a
reminder for people who were there when the documented discussions took
place, and as a tutorial for those who weren’t (Cockburn 2007, pp. 23–24).
Much of the Agile mindset misses this dichotomy and casts aspersions on
any kind of documentation. Nonetheless, the Agile manifesto contrasts the
waste of documentation with the production of working code: where code
can communicate or remember decisions, redundant documentation may
be a waste.

The Agile manifesto fails to explicitly communicate key foundations that
lie beneath its own well-known principles and values. It is change that
guides the Agile process; nowhere does the Manifesto mention learning or
experience. It tends to cast human interaction in the framework of code
development, as contrasted with processes and tools, rather than in the
framework of community-building or professional growth. Documentation
has a role there.

We should distinguish the act of writing a document from the long-term
maintenance of a document. A whiteboard diagram, a CRC card, and a

Introduction 17

diagram on the back of a napkin are all design documents, but they are
documents that we rarely archive or return to over time. Such documenta
tion is crucial to Agile development: Alistair Cockburn characterizes two
people creating an artifact on a whiteboard as the most effective form of
common engineering communication (Figure 1-1).

C
om

m
un

ic
at

io
n

E
ff

ec
tiv

en
es

s

2 people
on email

Video tape

Audio tape

2 people
on phone

(Questio
n-and-Answ

er)

(No Question-Answer)

2 people at
whiteboard

Paper

(cold) (hot)

Richness (“temperature”) of communication channel

Figure 1-1 Forms of communication documentation. From Cockburn (2007, p. 125).

It is exactly this kind of communication, supplemented with the artifact
that brings people together, that supports the kind of dynamics we want
on an Agile team. From this perspective, documentation is fundamental to
any Agile approach. There is nothing in the Manifesto that contradicts this:
it cautions only against our striving for comprehensive documentation, and
against a value system that places the documentation that serves the team
ahead of the artifacts that support end-user services.

In the 1980s, too many serious software development projects were
characterized by heavyweight write-only documentation. Lean architec
ture replaces the heavyweight notations of the 1980s with lightweight but
expressive code. There in fact isn’t much new or Agile in this: such was
also the spirit of literate programming. Lean architecture has a place for
lightweight documentation both for communication and for team mem
ory. Experience repeatedly shows that documentation is more crucial in a
geographically distributed development than when the team is collocated,
and even Agile champions such as Martin Fowler agree (Fowler 2006).

Code Does Not Stand Alone

In general, ‘‘the code is the design’’ is a good rule of thumb. But it is neither
a law nor a proven principle. Much of the crowd that advocates Agile today
first advocated such ideas as members of the pattern discipline. Patterns
were created out of an understanding that code sometimes does not stand

