GUIDELINES FOR

PRESSURE **RELIEF** AND **EFFLUENT** HANDLING **SYSTEMS**

GUIDELINES FOR

PRESSURE RELIEF AND EFFLUENT HANDLING SYSTEMS

This book is one in a series of process safety guideline and concept books published by the Center for Chemical Process Safety (CCPS) in cooperation with the Design Institute for Emergency Relief Systems (DIERS). Please go to <u>www.wiley.com/ccps</u> for a full list of titles in this series.

DISCLAIMER

It is our sincere intention that the information presented in this document will lead to an even more impressive safety record for the entire industry; however, neither the American Institute of Chemical Engineers (AIChE), The Design Institute for Emergency Relief Systems (DIERS), the Subcommittee members, its consultants, the Center for Chemical Process Safety (CCPS) Technical Steering Committee and their employers, their employers officers and directors, warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented in this document. As between (1) DIERS, the DIERS user group, the authors, its consultants, (2) AIChE, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers officers and directors, and (3) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequence of its use or misuse.

GUIDELINES FOR

PRESSURE RELIEF AND EFFLUENT HANDLING SYSTEMS

SECOND EDITION

CENTER FOR CHEMICAL PROCESS SAFETY

of the

AMERICAN INSTITUTE OF CHEMICAL ENGINEERS

New York, NY

AIChE' DIERS

Copyright © 2017 by the American Institute of Chemical Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Names: American Institute of Chemical Engineers. Center for Chemical Process Safety, author.
Title: Guidelines for pressure relief and effluent handling systems / Center for Chemical Process Safety of the American Institute of Chemical Engineers.
Description: Second edition. | New York, NY : John Wiley & Sons, Inc., [2017] | Includes bibliographical references and index.
Identifiers: LCCN 2017002351 (print) | LCCN 2017004079 (ebook) | ISBN 9780470767733 (cloth) | ISBN 9781119330264 (pdf) | ISBN 9781119330295 (epub)
Subjects: LCSH: Chemical plants--Waste disposal. | Hazardous wastes--Management. | Relief valves. | Sewage disposal.
Classification: LCC TD899.C5 (ebook) | DDC 660.028/6--dc23
LC record available at https://lccn.loc.gov/2017002351

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

DEDICATIONS

Dr. Michael A. Grolmes (Centaurus Technology), an original employee of Fauske & Associates LLC, who was principally responsible for development and documentation of much of the DIERS two-flow technology, the large-scale blowdown and reactive experimental program, and the SAFIRE computer program.

Dr. Joseph C. Leung (LeungInc), an original employee of Fauske & Associates LLC, who was jointly responsible for development of the DIERS Bench-Scale Apparatus (Later the VSP) and the reported experimental results as well as development of the Omega Method for calculating two-phase flows and sizing emergency relief systems for runaway reactions.

Dr. Georges A. Melhem (President and CEO, ioMosaic Corporation) who developed the SuperChemsTM family (EXPERT, DIERS, and Lite) of computer programs. These programs are widely used for various process safety studies and sizing of emergency relief and flare systems. The SuperChemsTM for DIERS computer program was made available for licensing and distribution by AIChE. The SuperChemsTM for DIERS Lite computer program was made available to AIChE for distribution and licensing with this book. Dr. Melhem was co-editor of this guideline and the 1st (1995), 2nd (1998) and 3rd (2005) International Symposium Proceedings published by AIChE / DIERS.

ioMosaic Corporation provided editorial, administrative, and significant financial support for the publication of this guideline and the 1st (1995), 2nd (1998) and 3rd (2005) International Symposium Proceedings published by AIChE / DIERS.

Fauske & Associates LLC, led by Dr. Hans K. Fauske, was the DIERS contractor responsible for the original development and documentation of the DIERS technology that changed the engineering paradigm for design of emergency relief system involving runaway reaction and two-phase flow. FAI recently celebrated their 35th anniversary of continuous technology development and support of safety improvements for the chemical process and nuclear industries.

CONTENTS

List of Figure	res	XV
List of Table	es	xxi
Preface		xxiii
Acknowledg	gements	XXV
In Memoria	m	xxvii
Files on the	Web Acco	mpanying This Book xxix
Introduct	ion	
1.1	Objective	
1.2	Scope	
1.3	Design C	odes and Regulations, and Sources of Information
1.4	Organizat	ion of This Book5
1.5	General F	Pressure and Relief System Design Criteria7
	1.5.1	Process Hazard Analysis 8
	1.5.2	Process Safety Information
	1.5.3	Problems Inherent in Pressure Relief and Effluent Handling
		Systems 11
Relief De	sian Crit	eria and Strategy13
2.1	Limitatio	ns of the Technology
2.2	General F	Pressure Relief Strategy
	2.2.1	Mechanism of Pressure Relief14
	2.2.2	Approach to Design
	2.2.3	Limitations of Systems Actuated by Pressure
2.3	Codes, St	andards, and Guidelines19
	2.3.1	Scope of Principal USA Documents
	2.3.2	General Provisions
	2.3.3	Protection by System Design
2.4	Relief De	vice Types and Operation
	2.4.1	General Terminology
	2.4.2	Pressure Relief Valves
	2.4.3	Rupture Disk Devices
	2.4.4	Devices in Combination (Series)
	2.4.5	Low Pressure Relief Valves & Vents
	2.4.6	Miscellaneous Relief System Components
	2.4.7	Selection of Pressure Relief Devices

viii **GUIDELINES FOR PRESSURE RELIEF AND EFFLUENT HANDLING**

2.5	Relief Sys	stem Layout	75
	2.5.1	General Code Requirements	75
	2.5.2	Pressure Relief Valves	77
	2.5.3	Rupture Disk Devices	80
	2.5.4	Low-Pressure Devices	80
	2.5.5	Devices in Series	81
	2.5.6	Devices in Parallel	87
	2.5.7	Header Systems	88
	2.5.8	Mechanical Integrity	88
	2.5.9	Material Selection	88
	2.5.10	Drainage and Freeze-up Provisions	89
	2.5.11	Noise	89
2.6	Design Fl	ows and Code Provisions	90
	2.6.1	Safety Valves	92
	2.6.2	Incompressible Liquid Flow	95
	2.6.3	Low Pressure Devices	95
	2.6.4	Rupture Disk Devices	95
	2.6.5	Devices in Combination	99
	2.6.6	Miscellaneous Nonreclosing Devices	100
2.7	Scenario S	Selection Considerations	100
	2.7.1	Events Requiring Relief Due to Overpressure	101
	2.7.2	Design Scenarios	102
2.8	Fluid Prop	perties and System Characterization	104
	2.8.1	Property Data Sources/Determination/Estimation	105
	2.8.2	Pure-Component Properties	105
	2.8.3	Mixture Properties	106
	2.8.4	Phase Behavior	106
	2.8.5	Chemical Reaction	108
	2.8.6	Miscellaneous Fluid Characteristics	112
2.9	Fluid Beh	avior in Vessel	113
	2.9.1	Accounting for Chemical Reactions	113
	2.9.2	Two-Phase Venting Conditions and Effects	114
2.10	Flow of F	Iuids Through Relief Systems	116
	2.10.1	Conditions for Two-Phase Flow	116
	2.10.2	Nature of Compressible Flow	117
	2.10.3	Stagnation Pressure and Non-recoverable Pressure Loss	121
	2.10.4	Flow Rate to Effluent Handling System	121
2.11	Relief Sys	stem Reliability	122
	2.11.1	Relief Device Reliability	122
	2.11.2	System Reliability	125

Require	nents foi	^r Relief System Design	131
3.1	Introduct	ion	131
	3.1.1	Required Background	132
3.2	Vessel V	enting Background	133
	3.2.1	General Considerations	133
	3.2.2	Schematics and Principle Variables, Properties and Param	neters 135
	3.2.3	Basic Mass and Energy Balances	140
	3.2.4	Physical and Thermodynamic Properties	148
	3.2.5	Energy Input or Output	153
	3.2.6	Solution Methods Using Computer Tools	156
	3.2.7	Mass and Energy Balance Simplifications	156
	3.2.8	Limiting Cases	158
	3.2.9	Vapor/Liquid Disengagement	160
3.3	Venting	Requirements for Nonreacting Cases	171
	3.3.1	Heating or Cooling of a Constant Volume Vessel	171
	3.3.2	Excess Inflow/Outflow	187
	3.3.3	Additional Techniques and Considerations	190
3.4	Calorime	try for Emergency Relief System Design	190
	3.4.1	Executive Summary	190
	3.4.2	Runaway Reaction Effects	191
	3.4.3	Reaction Basics	192
	3.4.4	Reaction Screening and Chemistry Identification	196
	3.4.5	Measuring Reaction Rates	197
	3.4.6	Experimental Test Design	222
	3.4.7	Calorimetry Data Interpretation and Analysis	
3.5	Venting	Requirements for Reactive Cases	259
	3.5.1	Executive Summary	259
	3.5.2	Overview of Reactive Relief Load	
	3.5.3	Analytical Methods	267
	3.5.4	Dynamic Computer Modeling	279
	3.5.5	Closing Comment	282
Methods	for Relie	ef System Design	283
4.1	Introduct	ion	283
	4.1.1	Relief System Sizing Computational Strategy and Tools f Design	or Relief
4.2	Manual a	and Spreadsheet Methods for Relief Valve Sizing	
	4.2.1	Relief Valve Sizing Fundamental Equations	
	4.2.2	Two-Phase Flow Methods	
	4.2.3	Relief Valve Sizing - Discharge Coefficient	310
	4.2.4	Relief Valve Sizing - Choking in Nozzle and Valve Exit	

GUIDELINES FOR PRESSURE RELIEF AND EFFLUENT HANDLING

4.3	Miscella	neous	
	4.3.1	Low-Pressure Devices - Liquid Flow	
	4.3.2	Low-Pressure Devices - Gas Flow	
	4.3.3	Low-Pressure Devices - Two-Phase Flow	320
	4.3.4	Low-Pressure Devices - Associated Piping	
4.4	Piping		
	4.4.1	Piping - Fundamental Equations	
	4.4.2	Piping - Pipe Friction Factors	
	4.4.3	Incompressible (Liquid) Flow	
	4.4.4	Piping Adiabatic Compressible Flow	329
	4.4.5	Isothermal Compressible Flow	
	4.4.6	Homogeneous Two-Phase Pipe Flow	
	4.4.7	Piping - Separated Two-Phase Flows	
	4.4.8	Slip/Holdup	
	4.4.9	Piping - Temperature Effects	
4.5	Rupture	Disk Device Systems	349
	4.5.1	Rupture Disks - Nozzle Model	349
	4.5.2	Rupture Disks - Pipe Model	
4.6	Multiple	Devices	
	4.6.1	Multiple Devices in Parallel	
	4.6.2	Multiple Devices - Rupture Disk Device Upstream of a F	PRV 351
	4.6.3	Multiple Devices - Rupture Disk Device Downstream of	a PRV
4.7	Worked	Example Index	
Addition	al Consi	derations for Relief System Design	355
5.1	Introduct	tion	355
5.2	Reaction	Forces	
5.3	Backgrou	und	357
5.4	Selection	n of Design Case	
5.5	Design N	Aethods	
	5.5.1	Steady State Exit Force from Flow Discharging to the A	tmosphere
	5.5.2	Dynamic Load Factor	
5.6	Selection	n of Design Flow Rate and Dynamic Load Factor	
	5.6.1	Rupture Disks	
	5.6.2	Safety Relief Valves	
5.7	Transien	t Forces on Relief Device Discharge Piping	
	5.7.1	Liquid Relief	
	5.7.2	Gas Relief	
	5.7.3	Two-Phase Flow	

5.8	Pipe Tens	sion	385
	5.8.1	Safety Relief Valves	386
	5.8.2	Rupture Disks	387
5.9	Real Gase	es	390
5.10	Changes	in Pipe Size	390
5.11	Location	of Anchors	390
5.12	Exit Geor	netry	391
5.13	Worked I	Examples	392
Handling	Emerge	ncy Relief Effluents	393
6.1	General S	Strategy	395
6.2	Basis for	Selection of Equipment	399
6.3	Determin	ing if Direct Discharge to Atmosphere is Acceptable	401
6.4	Factors T	hat Influence Selection of Effluent Treatment Systems	403
	6.4.1	Physical and Chemical Properties	403
	6.4.2	Two-Phase Flow and Foaming	405
	6.4.3	Passive or Active Systems	406
	6.4.4	Technology Status and Reliability	407
	6.4.5	Discharging to a Common Collection System	408
	6.4.6	Plant Geography	409
	6.4.7	Space Availability	409
	6.4.8	Turndown	409
	6.4.9	Vapor-Liquid Separation	410
	6.4.10	Possible Condensation and Vapor-Condensate Hammer	410
	6.4.11	Time Availability	411
	6.4.12	Capital and Continuing Costs	411
6.5	Methods	of Effluent Handling	411
	6.5.1	Containment	411
	6.5.2	Direct Discharge to Atmosphere	415
	6.5.3	Vapor-Liquid Separators	415
	6.5.4	Quench Tanks	423
	6.5.5	Scrubbers (Absorbers)	429
	6.5.6	Flares	432
Design N	lethods f	or Handling Effluent from Emergency Relief S	ystems
-		- •	437
7.1	Design B	asis Selection	438
7.2	Total Cor	ntainment Systems	439
	7.2.1	Containment in Original Vessel	439
	7.2.2	Containment in External Vessel (Dump Tank or Catch Ta	ank) 440

GUIDELINES FOR PRESSURE RELIEF AND EFFLUENT HANDLING

7.3	Relief De	evices, Discharge Piping, and Collection Headers	442
	7.3.1	Corrosion	443
	7.3.2	Brittle Metal Fracture	444
	7.3.3	Deposition	444
	7.3.4	Vibration	444
	7.3.5	Cleaning	445
7.4	Vapor-Li	quid Gravity Separators	445
	7.4.1	Separator Inlet Velocity Considerations	450
	7.4.2	Horizontal Gravity Separators	451
	7.4.3	Vertical Gravity Separators	460
	7.4.4	Separator Safety Considerations and Features	463
	7.4.5	Separator Vessel Design and Instrumentation	464
7.5	Cyclone	Separators	465
	7.5.1	Droplet Removal Efficiency	467
	7.5.2	Design Procedure	469
	7.5.3	Cyclone Separator Sizing Procedure	470
	7.5.4	Alternate Cyclone Separator Design Procedure	472
	7.5.5	Cyclone Reaction Force	475
7.6	Quench F	Pools	476
	7.6.1	Design Procedure Overview	477
	7.6.2	Design Parameter Interrelations	482
	7.6.3	Quench Pool Liquid Selection	483
	7.6.4	Quench Tank Operating Pressure	484
	7.6.5	Quench Pool Heat Balance	485
	7.6.6	Quench Pool Dimensions	493
	7.6.7	Sparger Design	499
	7.6.8	Handling Effluent from Multiple Relief Devices	509
	7.6.9	Reverse Flow Problems	509
	7.6.10	Vapor-Condensate Hammer	510
	7.6.11	Mechanical Design Loads	510
	7.6.12	Worked Example Index for Discharge Handling System I	Design
	1 4 1 1	·	511
Acronyms a	and Abbrev	lations	513 517
Nomenclati	ıre		
Annendix	(A: Sun	erChems™ for DIERS Lite – Description and	
Inc	truction		5/1
	Scope		UHI 5/11
A.1	Software	Functions	
A.2	A 2 1	Source Term Flow Calculation	
	11.4.1		

	A.2.2	Emergency Relief Requirement Calculations	544
	A.2.3	Physical Properties	545
	A.2.4	Piping Isometrics	546
	A.2.5	Specifying Vessel Designs	546
A.3	Installing	and Running SuperChems TM	547
Appendix	k B: CCF	low, TPHEM and COMFLOW Description and	
Ins	struction	\$	549
B.1	Scope	-	549
	B.1.1	Uncertainties	550
B.2	CCFlow	Calculation Options	550
	B.2.1	Opening and Running CCFlow	552
	B.2.2	File Operations	552
	B.2.3	Help Files	554
	B.2.4	Other Operations	555
	B.2.5	CCFlow Input Menu Errata	556
B.3	TPHEM	Calculation Options	556
	B.3.1	Running TPHEM with File Input	560
B.4	COMFLO	OW Calculation Options	562
	B.4.1	Running COMFLOW	563
Appendix	k C: Supe	erChems™ for DIERS – Description and Instruc	tions
	-	- -	565
C.1	Scope		565
C.2	Software	Functions	567
	C.2.1	Main Menu Tabs	567
	C.2.2	Define Tab	568
	C.2.3	Dynamic Flow Simulation	570
	C.2.4	Steady-State Flow Calculations	571
	C.2.5	Properties Tab	572
	C.2.6	VLE Tab	574
C.3	Installing	and Running SuperChems TM	576
Appendix	x D: Vent	ing Requirements	577
D.1	Worked I	Examples – Emergency Venting	579
	D.1.1	External Fire – Vapor Venting	580
	D.1.2	Tube Rupture	590
	D.1.3	Literature Examples for Non-Reactive Cases	596
D.2	Venting I	Requirements for Reactive Cases	597
D.3	Relief Va	lve Sizing Examples	599
	D.3.1	Incompressible Liquid Flow (with Viscosity Correction)	601

GUIDELINES FOR PRESSURE RELIEF AND EFFLUENT HANDLING

	D.3.3	Supercritical Fluid Flow	607
	D.3.4	Non-Flashing (Frozen) Choked Flow	609
	D.3.5	Non-Flashing (Frozen) Non-choked Flow	611
	D.3.6	Equilibrium Flow of Single-Component Fluid	614
	D.3.7	Non-Equilibrium Flow of Single-Component Fluid	616
	D.3.8	Multicomponent Fluid Flow	618
	D.3.9	Equilibrium Flow of One-Component Fluid (Low Subcoor Liquid Flow)	oled 621
	D.3.10	Equilibrium Flow of Single-Component Fluid (Highly Su Liquid Flow)	ıbcooled 626
	D.3.11	Single-Component Vapor Flow with Retrograde Condens	sation 630
D.4	Piping Flo	ow Examples	634
	D.4.1	Two-Phase Gas-Liquid Flow with Conventional Multiple	Chokes
	D.4.2	Real Gas Flow with Multiple Chokes	650
	D.4.3	Flow of High Viscosity Liquid	654
D.5	Reaction	Forces	658
	D.5.1	PRV with Viscous Liquid Flow – Steady Forces	658
	D.5.2	PRV with Real Gas Flow – Steady Forces	661
	D.5.3	RD with Liquid Flow - Steady and Transient Forces	664
	D.5.4	RD with Air Flow – Steady and Transient Forces	667
	D.5.5	PRV with Steam Flow - Steady and Transient Forces	670
	D.5.6	PRV with Two-Phase Flow – Steady and Transient Force Piping Design Pressure	s and 673
	D.5.7	PRV with Two-Phase Flow – Steady and Transient Force Piping Design Pressure	s and 675
	D.5.8	RD with Two-Phase Flow – Steady and Transient Forces	and
		Piping Design Pressure	678
Appendix	c E: Wor	ked Examples – Effluent Handling	681
E.1	Phase Sep	parator and Quench Tank Design Examples	681
	E.1.1	Example Problem Statement	682
	E.1.2	Given Conditions	683
	E.1.3	Quench Pool Design	692
	E.1.4	Gravity Separator Design	706
	E.1.5	Cyclone Separator Design	710
	E.1.6	Summary	
Referenc	es		717
Index			743

xiv

LIST OF FIGURES

FIGURE 2.3-1.	Typical ASME BPVC Section VII Multiple Valve (Non-Fire Case) Installations	29
FIGURE 2.3-2.	Example Adiabatic Pressure-Temperature	33
FIGURE 2.4-1.	Conventional Pressure Relief Valve	44
FIGURE 2.4-2.	Balanced Bellows Pressure Relief Valve	45
FIGURE 2.4-3.	Liquid Relief Valve	52
FIGURE 2.4-4.	Pop Action Pilot Operated Pressure Relief Valve	55
FIGURE 2.4-5a.	Conventional Pre-bulged	58
FIGURE 2.4-5b.	Typical Composite Style Rupture Disk	59
FIGURE 2.4-5c.	Graphite with Resin Binder	60
FIGURE 2.4-5d.	Forward Acting Scored	61
FIGURE 2.4-6a.	Pressure Relief Vent (Courtesy of the Groth Corporation, Stafford, Texas)	66
FIGURE 2.4-6b.	Combination Pressure-Vacuum Relief Vent	67
FIGURE 2.4-6c.	Pilot Operated Relief Vent	68
FIGURE 2.4-6d.	Weight Loaded Emergency Relief Vent	69
FIGURE 2.4-7.	Selection of Pressure Relief Devices	72
FIGURE 2.5-1.	Bleed System with Excess Flow Valve and Bleed Valve	86
FIGURE 2.5-2.	Bleed System with Pressure Switch for Alarm Signal Generation (detects seepage and burst)	86
FIGURE 2.5-3.	Bleed System with Burst Disk Detector for Alarm Signal Generation (some styles can also detect seepage)	86
FIGURE 2.7-1.	Blow Through Scenario 1	04
FIGURE 2.10-1.	Adiabatic Flow of Gases and Vapors in Nozzles and Piping See Lapp (1943)	ole 118

xvi GUIDELINES FOR PRESSURE RELIEF AND EFFLUENT HANDLING

FIGURE 2.10-2a.	Choked No-Slip Two-Phase Flow in Ideal Nozzles – Critical Pressure Ratio vs. Mass Fraction Vapor Phase
FIGURE 2.10-2b.	Choked No-Slip Two-Phase Flow in Ideal Nozzles – Mass Flow Rate Ratio vs. Mass Fraction Vapor Phase
FIGURE 3.2-1.	All-Vapor Venting (a) versus Two-Phase Venting (b) 134
FIGURE 3.2-2a.	Typical Vessel Protected by a Pressure Relief Valve and Venting a Vapor
FIGURE 3.2-2b.	Typical Vessel Protected by a Pressure Relief Valve and Venting a Two-Phase Mixture
FIGURE 3.2-2c.	Typical Vessel Protected by a Rupture Disk and Venting a Two-Phase Mixture
FIGURE 3.2-3.	Two-Phase Vapor-Liquid Disengagement 164
FIGURE 3.4-1.	Schematic of DSC Configuration (Courtesy of Netzsch Instruments)
FIGURE 3.4-2.	Schematic of the Accelerating Rate Calorimeter [®]
FIGURE 3.4-3.	Pictorial Representation of ARC Operation Modes
FIGURE 3.4-4a.	Schematic of the ARSST Containment Vessel
FIGURE 3.4-4b.	Depiction of Internals and Test Cell Assembly
FIGURE 3.4-5.	Schematic of the VSP Test Cell and Containment Vessel
FIGURE 3.4-6a.	NETZSCH APTAC 264 - View of Entire Instrument
FIGURE 3.4-6b.	Depiction of Containment Vessel Internals
FIGURE 3.4-7.	Illustration of Flow Regime Detector in the ARSST for (A) Non- Foamy and (B) Foamy Systems
FIGURE 3.4-8.	Self-Heat Rate Plot for DTBP as a Function of Concentration (As Measured in the APTAC)
FIGURE 3.4-9.	Effect of Thermal Inertia Factor on Self-Heat Rate
FIGURE 3.4-10.	Effect of Reactant Concentration on Self-Heat Rate
FIGURE 3.4-11.	Effect of External Heating (e.g., Fire) on Self-Heat Rate
FIGURE 3.4-12.	Example of Instrument Drift

LIST OF FIGURES

FIGURE 3.4-13.	Limit in Ability to Measure High Self-Heat Rates Attributed to Sample Thermocouple Lag
FIGURE 3.4-14.	Pressure Behavior with Change in Temperature for Reaction of DTBP in Toluene
FIGURE 3.4-15.	Autocatalytic Behavior (from Computer Simulation)
FIGURE 3.4-16.	Self-Heat Rate Shapes for Various Reaction Orders
FIGURE 3.4-17.	Estimating Activation Energy from the Initial Slope of a Self-Heat Rate Plot
FIGURE 3.4-18.	Adjustment of Self-Heat Rate Data for Thermal Inertia and Initial Temperature
FIGURE 3.4-19.	Adjustment of Self-Heat Rate Data for Thermal Inertia and Initial Temperature
FIGURE 3.5-1.	Generalized Vent Sizing Guideline and Comparison with Benchmark Data
FIGURE 4.2-1.	Capacity Correction Factor for Balanced-Bellows Relief Valves in Liquid Service
FIGURE 4.4-1.	Configuration for Pipe Flow Analysis
FIGURE 4.4-2.	Comparison of Adiabatic and Isothermal Pipe Flow for Air for the Same Upstream and Downstream Pressure
FIGURE 4.4-3.	Subsonic Flow of a Compressible Fluid in a Constant Diameter Pipe
FIGURE 5.3-1.	Control Volume for Calculating Exit Reaction Force
FIGURE 5.3-2.	Control Volume for Evaluation of Transient Forces
FIGURE 5.3-3.	Control Volume for Calculating Pipe Tension
FIGURE 5.6-1.	Performance of Safety Valves in Gas Service
FIGURE 5.7-1.	Compression of the Upper and Lower Limit Equations to the Shock- Expansion Wave Analysis
FIGURE 5.7-2.	Normalized Transient Force from a Rupture Disk with Gas Flow 381
FIGURE 5.7-3.	Comparison of the Transient Reaction Force from an Ideal Nozzle to a Frictionless Pipe Analysis

xviii GUIDELINES FOR PRESSURE RELIEF AND EFFLUENT HANDLING

FIGURE 5.8-1.	Equivalent Design Pressure for Pipe Tension for Flow from a Ruptu Disk	ire 389
FIGURE 5.12-1.	Exit Reaction Force with a Slant Cut at the Pipe Discharge	391
FIGURE 6.1-1.	Flow Chart for Selection of Process Options	397
FIGURE 7.4-1.	Schematic Flow Sheet for Horizontal Separator	447
FIGURE 7.4-2.	Horizontal Separator: Alternative Configurations	452
FIGURE 7.4-3.	Fill Fraction as a Function of Liquid Level in Horizontal Separator.	457
FIGURE 7.4-4.	Vertical Separator	461
FIGURE 7.5-1.	Schematic Flow Sheet for Emergency Cyclone Separator	466
FIGURE 7.5-2.	Cyclone Separator: Design Dimensional Relationships	468
FIGURE 7.5-3.	Alternate Cyclone Design	473
FIGURE 7.6-1.	Schematic Flow Sheet for Typical Quench Pool	478
FIGURE 7.6-2.	Typical Sparger Arrangement	503
FIGURE 7.6-3.	Alternative Sparger Arrangements	505
FIGURE D.3.2-1.	CCFlow Calculation of Isentropic Expansion Exponent	604
FIGURE D.3.3-1.	CCFlow Calculation of Isentropic Expansion Exponent	607
FIGURE D.3.5-1.	Mass Flux Calculation Results	612
FIGURE D.3.8-1.	Input Data Menu	620
FIGURE D.3.9-1.	TPHEM Output for 3-Point Interpolation Ideal Nozzle Mass Flux Calculation	623
FIGURE D.3.11-1	CCFlow Calculation of Isentropic Expansion Exponent	633
FIGURE D.4.1-1.	SuperChems Wizard Input Screen After Initial Data Entry	640
FIGURE D.4.1-2.	Middle Part of Relief Valve Specification Menu	643
FIGURE D.4.1-3.	Upper Part of Inlet Piping Segment Specification Menu	645
FIGURE D.4.1-4.	Piping Layout Menu	647
FIGURE D.4.1-5.	SuperChems Case Output – Upper Part	648

FIGURE D.4.1-6.	SuperChems Output – Second Part	649
FIGURE D.4.2-1.	CCFlow Main Menu with Options	650
FIGURE D.4.2-2.	CCFlow Second Menu Input	651
FIGURE D.4.2-3.	CCFlow Third Menu Input and Results	652
FIGURE D.4.2-4.	Using CCFlow to Determine Discharge Temperature	653
FIGURE D.5.1-1.	Piping Forces	660
FIGURE D.5.2-1.	Forces Acting on Relief Valve	663
FIGURE D.5.3-1.	Piping and Reaction Forces	664
FIGURE D.5.3-2.	Anchor and Force Locations	666
FIGURE D.5.4-1.	Reaction Forces	667
FIGURE D.5.4-2.	Steady State Force from COMFLOW	669
FIGURE D.5.4-3.	Transient Force from COMFLOW	669
FIGURE D.5.4-4.	Tension Force from COMFLOW	669
FIGURE D.5.5-1.	Steam Being Relieved by 4N6 Safety Valve	670
FIGURE D.5.5-2.	Steady State Force (F2) from COMFLOW	671
FIGURE D.5.6-1.	Liquid Being Relieved by a Bellows 4N6 Safety Valve	673
FIGURE D.5.7-1.	Two-Phase Relief by a Bellows 4N6 Safety Valve	675
FIGURE D.5.7-2.	Exit Thrust (TPHEM)	677
FIGURE D.5.8-1.	Reaction Force for Rupture Disk with Two-Phase Flow	678
FIGURE D.5.8-2.	Capacity and Exit Force from TPHEM	680
FIGURE D.5.8-3.	Transient Force from TPHEM	680
FIGURE E.1-1.	Results of Process Simulation	685
FIGURE E.1-2.	Results of Quench Pool Calculations	697

LIST OF TABLES

TABLE 2.3-1.	Maximum Accumulation as a Percent of MAWP 29
TABLE 2.3-2.	Maximum Set Pressures as a Percent of MAWP
TABLE 2.3-3.	Set Pressure Compensation Requirements for Pressure Relief Devices
TABLE 2.4-1.	PRV Orifice Parameters
TABLE 2.4-2.	PRV Set Pressure Tolerances
TABLE 2.4-3.	Typical Characteristics of Rupture Disk Devices
TABLE 3.3-1.	OSHA Venting Requirements: Fire Exposure of Storage Tanks 180
TABLE 3.3-2.	NFPA Heat Input to Vessel from Fire Exposure
TABLE 3.3-3.	Wetted Area 182
TABLE 3.4-1.	Comparison of Calorimeters Utilized for ERS Design
TABLE 4.4-1.	3-K Constants for Loss Coefficients for Valves and Fittings
TABLE 4.4-2.	Loss Coefficients for Expansions and Contractions (Hooper, 1988). 327
TABLE 5.6-1.	Basis for Calculating Quasi-Steady State and Transient Reaction Forces from Rupture Disk Systems
TABLE 5.6-2.	Basis for Calculating Quasi-Steady State and Transient Reaction Forces from Safety Valve Systems
TABLE 6.2-1.	Checklist for Emergency Relief Effluent Handling Systems
TABLE 6.5-1.	Containment in the Original Vessel
TABLE 6.5-2.	External Containment
TABLE 6.5-3.	Direct Discharge to the Atmosphere
TABLE 6.5-4.	Droplet Size Characterization
TABLE 6.5-5.	Selection of Vapor-Liquid Separators 417
TABLE 6.5-6.	Separator Selection Screening - Foam Handling Capability

xxii GUIDELINES FOR PRESSURE RELIEF AND EFFLUENT HANDLING

TABLE 6.5-7.	Separator Selection Screening - Droplet Size Removal/Handling Capability	418
TABLE 6.5-8.	Separator Selection Screen - Droplet Size Removal Efficiency	418
TABLE 6.5-9.	Gravity Separators	419
TABLE 6.5-10.	Vane Impingement Entrainment Separators	421
TABLE 6.5-11.	Cyclone Separators	422
TABLE 6.5-12.	Quench Pools	425
TABLE 6.5-13.	Examples of Quench Pool Liquid Applications	426
TABLE 6.5-14.	Scrubber	431
TABLE 7.5-1.	Cyclone Separator Design F-Factors	468
TABLE A.1-1.	SuperChems [™] for DIERS Lite Capabilities	542
TABLE A.2-1.	Source Term Wizards	543
TABLE A.2-2.	Emergency Relief Systems Wizards	544
TABLE C.1.	SuperChems [™] for DIERS Capabilities	566
TABLE D.1-1.	Software Usage and Input File Names for Worked Examples	577
TABLE D.1-1.	Software Usage and Input File Names for Worked Examples (continued)	578
TABLE D.1-1.	Software Usage and Input File Names for Worked Examples (continued)	579
TABLE D.1.1-1.	Component Properties for Fire Exposure Example Problem	582
TABLE D.1.2-1.	Propane Properties	591
TABLE D.4.3-1.	Summary of Iterative Calculations	657
TABLE E.1-1.	Rupture Disk System: Rupture Disk – NPS 3	686
TABLE E.1-2.	Pressure Relief Valve System – 4N6	687

PREFACE

The American Institute of Chemical Engineers (AIChE) has been closely involved with process safety and loss control issues in the chemical and allied industries for more than four decades. Through its strong ties with process designers, constructors, operators, safety professionals, and members in academia, AIChE had enhanced communication and fostered continuous improvement of the industry's high safety standards. AIChE publications and symposia have become information resources for those devoted to understanding the causes of incidents and discovering better means of preventing their occurrence and mitigating their consequences.

The Design Institute for Emergency Relief Systems (DIERS), formed in 1976, was a consortium of 29 companies that developed methods for the design of emergency relief systems to handle runaway reactions. DIERS spent \$1.6 million to investigate the two-phase vapor-liquid onset / disengagement dynamics and the hydrodynamics of emergency relief systems. Of particular interest to DIERS were the prediction of two-phase flow venting and the applicability of various sizing methods for two-phase vapor-liquid flashing flow.

DIERS became a Users Group in 1985 with a purpose:

- to reduce the frequency, severity and consequences of pressureproducing accidents and
- to promote the development of new techniques that will improve the design of emergency relief systems

The DIERS Users Group conducted 60 semi-annual 3-day technical meetings in 31 cities to include three International Symposia, three meetings in Canada, and two Joint US – European DIERS meetings in Hamburg and Dü sseldorf, Germany during the last 30 years. There were nineteen visits to industrial (chemical production plants; safety relief valve, rupture disk, and breather vent manufacturing facilities; and equipment supplier laboratories) and twelve computer and laboratory equipment training sessions conducted in conjunction with the semi-annual technical meetings. Approximately 625 additional technical presentations have provided a learning environment for the company representatives.

A combination of computational and / or experimental round-robin exercises have been conducted almost every year since the formation of the DIERS Users Group.

The reorganization of DIERS in 2015 from a corporate based to an individual based membership will provide a basis for further growth. New general (non-funded) and special (funded) projects as well other initiatives and activities are planned and underway to increase the scope and breadth of DIERS technical and outreach programs.

The Center for Chemical Process Safety (CCPS) was established in 1985 by AIChE to develop and disseminate technical information for use in the prevention of major chemical incidents. CCPS is supported by more than 170 sponsoring companies in the chemical process industry and allied industries; these companies provide the necessary funding and professional experience for its technical subcommittees.

Pressure relief systems have always been important components in the design of safety systems for chemical and petrochemical plants. The first DIERS book on pressure relief systems was *Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual* (CCPS 1993). The first edition of *Guidelines for Pressure Relief and Effluent Handling Systems* was issued in 1998 in recognition of the need for guidance in designing emergency relief systems to minimize or contain the discharge of potentially harmful materials. This second edition has been written to incorporate learnings in the field of emergency pressure relief since then.

ACKNOWLEDGEMENTS

The American Institute of Chemical Engineers (AIChE) wishes to thank the Center for Chemical Process Safety (CCPS) and the Design Institute of Emergency Relief Systems (DIERS) and those involved in its operation, including its many Sponsors whose funding made this project possible; the members of the Technical Steering Committee who conceived of and supported this project; and the members of the DIERS Emergency Relief / Effluent Handling Subcommittee for their dedicated efforts and technical contributions.

This book was edited by:

Harold G. Fisher	Union Carbide (Retired)
	Chair, DIERS
Georges A. Melhem, Ph.D.	ioMosaic Corporation, President
Albert I. Ness	CCPS Process Safety Writer

This book was authored by the DIERS Emergency Relief / Effluent Handling Subcommittee:

Robert D'Alessandro	Evonik Corporation (Retired)
Thoralf J.F. Brecht	Union Carbide (Retired)
James G. Brown	Cytec Industries, Inc.
Ron Darby	Texas A & M University (Emeritus)
Dilip K. Das	Bayer CropScience
Harold G. Fisher	Union Carbide (Retired)
Warren A. Greenfield	Ashland, Inc.
John J. Hauser	PROSAF, Inc.
Peter P. Howell	Mark V, Inc.
Alan Keiter	ioMosaic Corporation
Leonid Korelstein	PSRE Company
Steve Kostos	Bayer Technology Services
Marc E. Levin	Shell Exploration & Production Company
Roy N. Lucas	CB&I Lummus (Retired)
Michael J. Maness	Eastman Chemical Company
Georges A. Melhem	ioMosaic Corporation
Dean Miller	Fike Corporation
Daniel Nguyen	ioMosaic Corporation
Peter Ralbovsky	Netzsch Instruments North America, LLC
Mark Ryan	Cytec Industries, Inc.
Aubry Shackelford	Inglenook Engineering, Inc.
Gary R. VanSciver	The Dow Chemical Company

xxvi GUIDELINES FOR PRESSURE RELIEF AND EFFLUENT HANDLING

The Subcommittee wishes to thank the following peer reviewers for their thoughtful and detailed comments and valued suggestions:

David D. Goetz	The Dow Chemical Company
Greg G. Hendrickson	Chevron Phillips Chemical Company
Anthony M. Janeshek	The Dow Chemical Company
Joseph C. Leung	LeungInc.
Benjamin C. McDavid	Ashland, Inc.
Robert J. Stack	The Dow Chemical Company
Scott A. Tipler	The Dow Chemical Company

CCPS thanks ioMosaic Corporation and all of their contributors that made the publications of this book possible:

Daniel Nguyen and Paul Goncalves for software support.

Vanessa Millette, Kristi Marak and Sarah Weinmann for preparing the manuscript.

IN MEMORIAM

To the Memory of Our Colleagues Stanley S. Grossel Howard E. Huckins Harold S. Kemp Stanley D. Morris Thomas J. Rebarchak Richard Schwab

FILES ON THE WEB ACCOMPANYING THIS BOOK

Access the *Guidelines for Pressure Relief and Effluent Handling Systems, Second Edition,* software and documents using a web browser at:

http://www.aiche.org/ccps/PRTools

Each folder will have a readme file and installation instructions for the program.

After downloading SuperChems[™] for DIERS Lite, the purchaser of this book must contact ioMosaic with the numeric code supplied within the sealed packet in this book. The customer support line at ioMosaic for these programs is **603-685-6944**. The purchaser will then be supplied with a license code to be able to install and run SuperChems[™] for DIERS Lite. Only one license per purchaser will be issued. Once the sealed packet is broken and code uncovered, book cannot be returned.

These programs are offered as is, with no guarantee. The disclaimer in this book applies to the software, as well as the contents of the book.

INTRODUCTION

1.1 OBJECTIVE

Guidance for the design and selection of pressure relief devices for most applications can be found in documents provided by several organizations including: the American Society of Mechanical Engineers (ASME), the American Petroleum Institute (API), the National Fire Protection Association (NFPA), the Compressed Gas Association (CGA), and the International Organization for Standardization (ISO). The Occupational Safety and Health Administration (OSHA) Process Safety Management (PSM) regulation and the similar Environmental Protection Agency (EPA) Chemical Accident Prevention regulation (commonly referred to as Risk Management Plan (RMP)) and increased industry efforts to improve safety and environmental protection practices have led to much greater focus on reducing and controlling releases of materials from pressure relief systems to the atmosphere.

The guidance and sizing formulas provided by the above organizations are generally applicable only to single-phase flow. Research and studies by the Design Institute for Emergency Relief Systems (DIERS) resulted in a new body of technology on two-phase flow from relieving vessels and the effect of two-phase flow on pressure relief system design and on the performance of pressure relief valves under such conditions. These developments suggested a need for a presentation from a chemical industry perspective on the design and selection of pressure relief devices for single as well as multi-phase flow from pressure relief systems and for the treatment of the effluent from pressure relief systems. Preparation of this book by the CCPS was in response to this need.

This CCPS / DIERS book is directed toward experienced process engineers and specialists with a basic proficiency in fluid dynamics and process engineering fundamentals. The objective is to present information that will provide guidance for selecting and designing reliable emergency pressure relief and effluent handling systems. These systems should be designed to protect equipment from overpressure and to either contain or safely control hazardous materials discharged during an emergency. This second edition presents updated information on several widely used national codes and standards to include those which have been adopted by regulatory authorities for inclusion in either federal or local regulations. These documents should be viewed by designers as representing industry practices with proven value in providing reliable process safety systems, not just as regulations requiring compliance.

1.2 SCOPE

General background information on pressure relief technology is presented along with guidance for selecting relief devices and effluent handling equipment. Calculation procedures for designing pressure relief and selected effluent handling equipment are also presented. Numerous example problems are used to illustrate calculation procedures. Computer programs are presented for handling flow calculations for compressible gases, for evaluating complex two-phase flow situations, and for sizing effluent handling equipment. The book includes:

- Discussions of national and international codes and regulatory impacts on pressure relief system design and operation.
- Reviews of causes of overpressure events and selection of the worst case scenario and the relief system design and design basis for the relief system including systems involving chemically reactive and highly viscous materials.
- Descriptions of a range of relief devices and operating performance characteristics including flow calculation methods for sizing pressure relief devices and associated piping systems.
- Characterization of fluid properties including sources of property information and handling of mixtures.
- Methods for calculation of reaction thrust forces from discharge of relief systems.
- Guidance in selecting effluent handling systems including equipment commonly used for pressure relief system applications. This includes gravity and cyclone separators, scrubbers, quench pools, flares, and atmospheric dispersion (for non-hazardous materials only).
- Calculation procedures for sizing the most widely used equipment for effluent handling, including gravity separators, cyclones, quench pools and spargers.

Maintenance, operations, and testing procedures and technology are not discussed in detail, but are covered briefly in selected cases. Prevention or mitigation of overpressure incidents and the essential components of a good process safety management system are beyond the scope of this book. Such procedures and technology include emergency control or shutdown systems, inherent safety concepts, safety layers of protection, prevention of explosive deflagrations and detonations, and other measures used to reduce the frequency or magnitude of emergency overpressure events. Guidance on these subjects can be found in other CCPS books, which are listed in the appropriate sections of this book.

If potentially hazardous materials might be discharged to the atmosphere, specialists on the health and environmental effects should be consulted to determine safe levels of discharge to the air, water, and land. In general the release of hazardous materials to the environment should be avoided if at all possible.

1.3 DESIGN CODES AND REGULATIONS, AND SOURCES OF INFORMATION

There are a number of organizations that provide information on pressure relief and handling of effluent from pressure relief systems. Some of these, with a brief summary of their role, are shown below (see Section 2.3.1 for a more extensive listing):

Federal and local governments. The federal government, through OSHA and EPA regulations, provides much information on requirements for process safety and environmental protection. Many states have implemented regulations that parallel or exceed federal regulations. Designers and operators of pressure relief systems should maintain a familiarity with these requirements. While the focus in this book is on practices, codes, and standards of U.S. origin, designers and operators of facilities in other countries are urged to become familiar with any practices or regulations that may apply. In many cases facilities designed to meet U.S. requirements will either meet or exceed requirements based on international regulations.

American Society of Mechanical Engineers (ASME). The ASME publishes the Boiler and Pressure Vessel Code (ASME BPV Code), which contains basic requirements for overpressure protection of vessels covered by the Code. Section VIII covers Pressure Vessels, which are applicable to the petroleum and chemical process industries. Many governmental authorities have adopted the ASME BPV Code and made it part of their regulations. The ASME BPV Code therefore has the force of law in many states.

American Petroleum Institute (API). The API publishes a series of standards and recommended practices that cover the fundamentals and application of pressure relief technology including pressure relief of low pressure tanks and testing and maintance of pressure relief valves. Many recommendations are presented that cover various aspects of pressure relief system design, including effluent handling.

National Fire Protection Association (NFPA). The NFPA publishes a number of documents that present pressure relief requirements for various specific fluid services. Their Flammable and Combustible Liquids Code (NFPA 30), Standard for Water Spray Fixed Systems for Fire Protection (NFPA 15), Standard on Explosion Protection by Deflagration Venting (NFPA 68) and Standard on Explosion Prevention Systems (NFPA 69) are of particular interest to the chemical and petroleum process industries.

National Board of Boiler and Pressure Vessel Inspectors (NB). The National Board publishes information on certified flow capacity of valves tested in accordance with ASME procedures and documents related to inspection and repair of pressure relief valves.

International Organization for Standardization (ISO). ISO publishes international standards. Some of these documents are crossbranded with API documents. Compliance with these standards is required by most European countries. The ISO 4126 standard for safety devices for protection against excessive pressure is divided into eleven separate parts applicable to safety valves, rupture disks, pilot operated valves and other topics.

DIERS. The Design Institute for Emergency Relief Systems (DIERS) was established in 1976 to develop a better understanding of pressure relief system technology including vapor-liquid disengagement in vessels and flow of two-phase fluids through pressure relief devices and piping. The results of the initial research have been published (DIERS 1992). Current developments are covered during DIERS biannual meetings and in associated reports where information on new research, practices and technology is presented and discussed.

Other sources of information that supplement the standards and codes indicated above are given as references and noted within the text of each chapter of the book.

1.4 ORGANIZATION OF THIS BOOK

Pressure relief technology is covered in the chapters of this book. The following is a brief summary of each chapter:

Chapter 1. Introduction

Chapter 2. Relief System Design Criteria and Strategy: Presents general information on pressure relief technology (including terminology and definitions) pressure relief design strategies, ASME BPV Code requirements, and descriptions and layout of relief systems. Also covered are causes of overpressure, review of worst credible relief scenarios, analysis of vapor-liquid phase behavior in vessels, determination of required flow capacity, fluid properties and system characterization, flow of fluids through relief systems, and relief system reliability.

Chapter 3. Requirements for Relief Systems Design: Covers vessel venting background to include vessel onset / disengagement dynamics for evaluating whether two-phase flow might occur, venting requirements for nonreacting cases, calorimetry for reactive emergency relief system design, and venting requirements for reactive cases.

Chapter 4. Methods for Relief Systems Design: Covers calculation methods for sizing and rating pressure relief devices and associated piping to include computerized and manual methods for safety relief valves and piping and rupture disks and associated piping for vapor, liquid, and twophase flows.

Chapter 5. Additional Considerations for Relief Systems Design: Covers the mechanical forces involved during emergency venting. Methods for estimating reaction thrust from relief system discharge are covered.

Chapter 6. Handling Emergency Relief Effluents: Presents guides to selection of equipment and systems to treat the effluent from relief devices. The focus is on equipment and techniques that are more commonly used in pressure relief applications. Information is summarized in tables that list advantages, disadvantages, and areas of possible application for the various types of equipment.

Chapter 7. Design Methods for Handling Effluent from Emergency Relief Systems: Covers design methods and sizing calculation procedures for various types of equipment and processes that are commonly used to treat effluent in emergency relief situations. Methods are presented in detail for gravity separators, cyclone separators, and quench pools (including spargers for quench pools). Computer Programs. Several useful computer programs are provided at the CCPS website listed in the front of the book. These programs are provided to aid in making flow calculations for relief devices and piping and for sizing selected effluent handling equipment. The computer programs include the SuperChemsTM family of new programs and the CCFlow and TPHEM legacy programs provided in the first edition of this guideline.

SuperChemsTM for DIERS Lite includes steady state methods for evaluation of relief requirements and contains a visual interface for the construction of piping isometrics with a variety of pressure relief devices components such as rupture disks and safety relief valves. SuperChemsTM for DIERS includes methods for modeling the dynamics of relief from vessels with and/or without chemical reactions.

The CCFlow family of programs includes the following:

- TPHEM, a DOS program for two-phase flow through piping and nozzles,
- COMFLOW, a DOS program for gas/vapor flow through piping and nozzles,
- CCFlow, a Windows [®] program for two-phase and gas/vapor flow through piping and nozzles for sizing and evaluating relief valves and for sizing gravity separators, cyclone separators, and spargers.
- CCFlow Utilities, a program to calculate Antoine coefficients, compressibility factors, and isentropic expansion coefficients. Multicomponent systems can be handled for the latter two items.

Instructions for use of The CCFlow program are included in the CCFlow Help files. The uses of the programs are illustrated in the Appendices. These programs do not address determination of required relieving capacity or composition of the effluent.

1.5 GENERAL PRESSURE AND RELIEF SYSTEM DESIGN CRITERIA

Anyone with responsibility for designing, operating, and maintaining pressure relief systems and other process equipment should be familiar with: the provisions of the OSHA Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119) PSM standard; the EPA Risk Management Program (40 CFR 68.130) RMP rule; and the requirements of States that have their own State Plan. Guidance on the implementation of the principles embodied in the Federal and State standards are discussed in general in CCPS (1989c and 1992) and in API Standard 750. More specific guidance on each of the required elements is provided in numerous CCPS books.

While compliance with all applicable regulations is important, the basic objective is the safety of people and preventing damage to facilities and the environment. Compliance with regulations alone may not provide an acceptable level of protection. Compliance with the Federal and State Plan regulations is required if a listed chemical is present in the process in an amount equal to or in excess of a threshold quantity. The engineering practices provided in this book are applicable to all processes and may be considered to represent the current best thinking of the DIERS working group.

Company standards and practices are also an important source of information on design requirements for pressure relief systems. They are usually based on process safety management principles that have been developed from many years of experience. Many regulations use industry best-practices as a reference. These practices have been proven to represent good business practices as well as good process safety management and have been incorporated into the culture of many organizations.

Some important process safety management techniques related to pressure relief system design, which are not covered in detail in this book, are discussed briefly below. OSHA published a standard in 1992, Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119) to control chemical hazards in the workplace. That standard covers basic requirements for implementing a good process safety management program which involves applying generally recognized and accepted good engineering practices to ensure process safety in new and existing plant facilities. Two components of a process safety management program referred to in 29 CFR 1910.119 are particularly relevant to the design, operation, and maintenance of pressure relief systems; these are Process Hazards Analysis and Process Safety Information, which are discussed briefly in the following sections.

1.5.1 Process Hazard Analysis

A chemical process and plant facility should be analyzed for all possible causes of overpressure to determine the worst credible scenario. The worst credible scenario establishes the design basis for the pressure relief and for the effluent handling system. Methods for conducting such a hazards analysis and evaluation are presented in CCPS (2003 and 2008a). The hazard analysis should be revalidated on a regular basis to review the current process conditions, any possible mechanical changes in the facility since the original construction or last hazard analysis, and maintenance and operating records for any signs of problems. The pressure relief system should then be verified to ensure that it is still adequate to protect the equipment. Guidance on how to revalidate a hazard analysis is provided in CCPS (2001) and by Chadwell (1997).

Inherent safety concepts should be applied during the process design on the hazards of the process. Refer to CCPS (2009) for guidance on this topic. This can include changing process chemistry to use less hazardous materials, avoiding extreme temperatures and pressures, and designing for total containment by increasing vessel design pressure.

Operating and maintenance personnel should be trained. Operating and maintenance procedures must be written for start-up, shutdown, upset, and normal operating conditions. These written procedures must be updated and must be part of the periodic hazard review and analysis program. Proper supervisory controls must be instituted and training and refresher courses provided for operating and maintenance personnel. Refer to CCPS (1989c, 1995e and 1996b) for guidance on this topic.

Process safety audits should be conducted. An independent audit and verification of the design can provide additional assurance that the emergency relief system will adequately protect the vessel. An audit of the initial design can include a review of overpressure events that were considered in selecting the design basis. A check of the final mechanical design and specifications for the pressure relief system should also reviewed. For existing process units, a periodic audit can include a review of current process conditions, any possible mechanical changes in the facility since the original construction, maintenance and operating records for any signs of problems, and verification that the pressure relief system is still adequate to protect the vessel. See CCPS (2008).